
A MARSHALL CAVENDISH 1111 COMPUTER COURSE IN WEEKLY PARTS

LEARN PRINRAMKING -MR FUN AND THE FUTURE

Vol. 1 	 No 10

APPLICATIONS 6
	 .—.•

A COMPUTER TYPING TUTOR 	 289

Improve your speed and accuracy at the keyboard
with the aid of the computer itself

GAMES PROGRAMMING 10

MAPPING OUT AN ADVENTURE 	296

How to plan your story—and the first stages

of programming it into the computer

BASIC PROGRAMMING 21

MORE PICTURES FROM MATHS 	 302

Use the circular functions to create a range of
new images—some static, some with movement

MACHINE CODE 11

ASSEMBLING BY HAND

Learn about assembly language—and what's

involved in translating it into machine code

BASIC PROGRAMMING 22

.4111 NDERSTANDING ASCII CODES 	314

The useful codes that your computer recognizes—
and how to make them work for you

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front Cover, Science Photo Library/NASA Paul Chave. Page 289, Howard
Kingsnorth. Pages 290, 291, 292, Nick Mijnheer. Page 294, Graeme Harris.
Page 295, Nick Mijnheer. Pages 296, 298, 301, Alan Baker. Page 300, Bernard
Fallon. Pages 302, 304, 306, Digital Arts. Pages 305, 306, Ray Duns. Pages
309, 310, 312, Chris Lyons. Pages 314, 317, Paul Chave. Pages 318-320,
Science Photo Library/Paul Chave.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV SPA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Artisan Press,
Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: Sec inserts for details, or
write to INPUT Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details,
or write toINPUT,Gordon and Gotch
;NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from
local newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + ti■—w COMMODORE 64 and 128

Fl ACORN ELECTRON,
BBC B and B+ U: DRAGON 32 and 64

TANDY TRS80
IX81 	VIC 20T COLOUR COMPUTER

■ WHY LEARN TO TYPE?
■ LEARNING THE HOME KEYS
■ HOW TO USE THE PROGRAM
■ IMPROVING YOUR SPEED AND

ACCURACY

Whether you're going to sit down
and write your first novel, or just
want to speed up your copying of
programs, fast, accurate typing is an
essential first step

The fifth generation of computers promises far
more direct communication between machine
and user—with things like touch and voice
control becoming commonplace. Already,
some of these newer control systems are
finding their way onto relatively low-priced
business and industrial machines.

Unfortunately for the home computer en-
thusiast, however, it looks like being some time
before such facilities are available on domestic
machines, and for the moment, we are stuck
with the keyboard.

Actually, the keyboard is a reasonably
efficient method of giving the computer in-
formation or instructions—but its main disad-
vantage is that it is very time-consuming,
particularly if you are not an expert (and very
accurate) typist. And nothing is more frustrat-
ing than trying to copy a printed listing if you

continually have to look from keyboard to
screen to paper to ensure that your typing into
the computer is accurate.

So why not use your computer to teach you
to improve your typing? It's an ability that is
useful not just for writing programs, but will
also prove invaluable if you ever want to make
use of the computer's potential as a word
processor. The program which follows will
help you get more familiar with the keyboard,
and—if you don't cheat—increase your speed
and your accuracy, too.

Spectrum owners are at a disadvantage
here, because the Spectrum keyboard is by its
nature less easy to type on at speed. But of
course, for typing programs, you only need a
single keystke for each BASIC command.

ABOUT THE PROGRAM
Just like a proper typing course which could
cyst a small fortune, the INPUT typing course

designed to build your skills up methodically,
so that you will get results at every stage as you
progress. But it's not a magic process, and like
anything else worth learning, it takes time.

So the course is broken down into a series of

easy stages, with add-on programming sec-
tions for each 'stage. In this way, when you are
ready to move on, you can build up the
existing program to take you on to the next
level of proficiency. And as you go, you'll get a
constant update on your speed and accuracy.

LEARNING THE 'HOME' KEYS
Real typing proficiency means being able to hit
the right keys every time without having
constantly to look at the keyboard. It's easier
than it sounds, but you can only achieve it by
starting the right way, and by keeping up the
good habits once you have learned them.

Obviously, if you are going to be able to hit
the right keys only by feel, you'll have to learn
where they are. And just as importantly, you
will need to ensure that your hands are always
in the same position over the keyboard—
otherwise you have no way of knowing where
you are about to press down on it. Professional
typists do this by ensuring that their fingers are
always positioned over the same keys—called
the 'home' keys. These are the keys in the
middle row, that begins ASDF... . So these
are the keys that you will learn first. Once you

master the home keys, the rest of the keyboard
can be reached by moving your fingers only a
short distance each time.

To get the maximum benefit from the
course, you should try to stick to this and not
cheat. But even if you are a 'peek and pick'
one-finger typist, you should be able to see
your skills improve.

When you have typed in the program—a
task that should get easier as you go on with the
course—and RUN it, sit with your hands poised
over the keyboard ready to start, following the
screen prompts which are explained below.
The little finger of your left hand should be
over the A key, the next finger over the S, and
so on, with your index finger over the F. Your
right index finger should be over the J, the
middle finger over the K, and so on. Your
thumbs (except on the Spectrum) should be
poised over the space bar. This of course leaves
two keys—G and H—uncovered in the mid-
dle. G can be reached with your left index
finger and H with your right index finger.

If this sounds complicated, don't worry.
The first part of the program is designed to
make it familiar.

HOW THE PROGRAM WORKS
When you RUN the program, the screen will
ask you to choose between five options. You
should start with lesson 1 and master this
before progressing to lesson 2 and so on.

Level 1
The screen displays the home keys in a line as
they appear on the keyboard. An asterisk will
appear above each key in turn, working from A
to ; (A to : on the Commodore keyboard and A
to L on the Spectrum). Strike each key in
sequence as the asterisk moves over it, using
the correct finger—remember to type G and H
by moving your index fingers only, and use
your right little finger for ; or :.

The asterisk will wait for you if you make a
mistake. A correctly-hit key is marked by a
beep, with a buzz for a missed or incorrect
letter.

At the end of the exercise, the screen will
display your time, and the number of errors
you made.

Level 2
When you are familiar with the position of the
keys, move on to this level which is similar to
the first, except that now the asterisk moves

from letter to letter at random—don't cheat by
looking down! Once again, your time taken to
complete the exercise (you get 20 random
letters each go), and the number of mistakes
you made, is displayed when you finish.

Level 3
This is similar to Level 2 in that you are given
random letters, one at a time. But this time, the
screen does not show you their position on the
keyboard. Instead, they are just printed up
singly on the centre of the screen. Once again,
you get 20 each go.

Level 4
At last, you can type some words! All the
words in this exercise are made up of letters on
the home keys only—GLAD, for example. As
in the previous level, 20 words appear at
random in the centre of the screen, one after
another. As you copy each word, an asterisk
indicates each letter. And once more you get a
score for speed and accuracy. Don't cheat by
looking, or you will be handicapped for some
of the more challenging tests which are to
come later on in the course!

Level 5
This time a 'sentence' of 6 or 7 random words
is printed out. As you type in the letters, they
appear one by one under the printed words.
When you have typed the whole line, you'll be
told your score and an equivalent speed in
words per minute (wpm). This is based on an
average length of 5 letter words and a space
between each word. When you are typing in
the words that appear on the screen, don't
forget the spaces, which you obtain with your
thumbs on the space bar—on the Spectrum
you need to press the awkwardly-sited SPACE
key with your little finger.

Practise each of the levels until you can do
',them easily. Next, we add the remaining keys

and some more complicated words.

160 GOTO 20
200 GOSUB 1000
210 FOR K=7 TO 23 STEP 2
220 PRINT AT 10,K;"*"
230 LET R$ = S$((K — 5)/2)
240 GOSUB 1100
250 IF C=0 THEN GOTO 240
260 PRINT AT 10,K;" ❑ "
270 NEXT K
280 CLS : GOTO 1300
300 GOSUB 1000
310 FOR K=1 TO 20
320 LET RN= INT (RND*9) . 2 +1
330 PRINT AT 10,RN +6;"*": LET

R$ = S$((RN + 1)/2)
340 GOSUB 1100: IF C=0 THEN GOTO 340
350 PRINT AT 10,RN + 6;" 0"
360 NEXT K

What typing speed should I aim
at to start with?
At this early stage of the course you
should aim for accuracy rather than
speed. Once you can type in all the
letters and words without any errors you
can try speeding up.

You should practice Levels 1, 2 and 3
until you can type the 20 letters in about
12 or 13 seconds, and for Levels 4
and 5 you should aim for
about 15 words per
minute or more.

10 BORDER 1: PAPER 1: INK 7: CLS
20 POKE 23658,8: LET ER = 0
30 LET S$-= "ASDFGHJKL"
100 PRINT INVERSE 1;AT 8,9; "EITYPING

TUTOR ❑ "
110 PRINT "TAB 6;"SELECT LEVEL (1 TO 5)"
120 IF 1NKEY$ ="- THEN GOTO 120
130 LET A$=- INKEYS: IF A$ <"1" OR

A$ > "5" THEN GOTO 120
140 BEEP .2,10
150 GOSUB VAL A$`100+100

370 CLS : GOTO 1300
400 CLS : PRINT "TYPE THE LETTER SHOWN

ON THEEI111111 El SCREEN"
410 FOR N=1 TO 100: NEXT N
420 POKE 23672,0: POKE 23673,0
430 FOR K=1 TO 20
440 LET RN= INT (RND*9) +1
450 PRINT AT 11,16;S$(RN)
460 LET R$=S$(RN)
470 GOSUB 1100: IF C=0 THEN GOTO 470
480 PRINT INVERSE 1;AT 11,16;" ": NEXT K
490 CLS : GOTO 1300

500 CLS : PRINT "TYPE THE WORD
SHOWN ON THE DODDED
SCREEN": POKE 23672,0: POKE 23673,0

510 LET TL = 0: FOR N=1 TO 20: RESTORE :
LET RN = INT (RND*24) +1

520 FOR K=1 TO RN: READ T$: NEXT K
530 PRINT AT 10,13;"0 	DO": PRINT

AT 10,13;T$
540 FOR M=1 TO LEN T$: PRINT AT

9,11+M;" ❑ * ❑❑❑❑ "
550 LET R$=T$(M): GOSUB 1100
560 IF C=0 THEN GOTO 550
570 NEXT M
580 LET TL=TL+ LEN T$: NEXT N
590 CLS : PRINT AT 18,0;"WORDS

PER MINUTE= ❑ ";INT (TL*500/
(PEEK 23672 +256*PEEK 23673) + .5):
GOTO 1300

600 CLS : PRINT "TYPE THE WORDS
SHOWN ON THEE DODD

SCREEN": LET T$=""
610 FOR N =1 TO 6: RESTORE : LET

RN = INT (RND*24) + 1: FOR K=1 TO RN:
READ X$: NEXT K

620 LET T$ T$ + X$ + "D"
630 NEXT N: LET T$=T$ (TO LEN T$ -1)
640 POKE 23672,0: POKE 23673,0: PRINT AT

10,0;T$
650 PRINT AT 12,0;: FOR M=1 TO LEN T$
660 LET R$=T$(M): GOSUB 1100
670 IF C=0 THEN GOTO 660
680 PRINT T$(M);: NEXT M
690 LET TL= LEN T$: GOTO 590
1000 CLS : PRINT "PRESS THE KEY

INDICATED BY THE ❑ ❑ ASTERISK"
1010 PRINT AT 12,7;"A ❑ S ❑ D ❑ F ❑ G ❑

HOJ ❑ KE L"
1020 FOR K=1 TO 100: NEXT K: POKE

23672,0: POKE 23673,0
1030 RETURN
1100 PAUSE 0
1110 LET A$=1NKEY$: IF A$< >R$ THEN

BEEP .2,-10: LET ER= ER +1: LET
k= 0: RETURN

1120 BEEP .05,20: LET C=1: RETURN
1300 PRINT AT 19,0;"TIME= El";

(PEEK 23672 + 256*PEEK 23673)/50;
"III SECONDS": PRINT "NUMBER OF
ERRORS = ❑ ";ER

1310 PAUSE 100: RETURN
2000 DATA "ASK","SAD","DAD","GLAD",

"HAD","LASH","LAG","HAS","HASH",
"DASH","ASS","ASH"

2010 DATA "ALL","FALL","HAG",
"GASH","FLAG","JAG","LASS","FAG",
"GAS","SASH","FLASK","SLASH"

10 DIM W$(21),W0$(33):FORZ=1T033:
READ WO$(Z):NEXT

20 FOR Z=1T04011$ = L1$ + "-":
NEXT:L1$ = "A" + L1$

30 PRINT "ID IMI"TAB(7)"******TYPCING
IMITUTC OR* ** *"

40 A$="ASDFGHJKL:":POKE 54296,15:
GOTO 380

50 T1$ = "000000":S = 0:INVV =1
60 N= 0: POKE 198,0

70 IF K=5 AND P>0 THEN N=N+1:
P=P+1:GOTO 140

80 PRINT liggggigggnig";:IF K<3
THEN PRINT TAB(11)"LaACISEI
D ❑ F ❑ G ❑ H ❑ J ❑ K ❑ L ❑ :":
POKE 198,0

90 X= INT(RND(1)*10)+ 1:N= N+ 1:
P=P+1:1F K=1 THEN X= N: GOTO 120

100 IFK=3THENX=INT(RND(1)*10)
+1:PRINTTAB(18)"L 8 gill
1111 u"miDs(As,x,i)"k
II II Eln"

110 IF K=4 THEN PRINT TAB/16'

W$(VVW):X= N'.5 +3
120 IF K<3 OR K=4 THEN PRINT

"ggggigggg -TAB(1i +(x-1)
. 2)" .g* -

130 IF K=5 THEN FOR Z=1 TO 7:
PRINT - 0"W$(4:NEXT Z:PRINT:
PRINT - ZIL";

140 GET K$:IF K$="" THEN 140
150 IF K>3 AND K$= MID$(W$(WW),N,1)

THEN 210
160 IF K>3 THEN 180
170 IF K$=M1D$(A$,X,1) THEN 210
180 W= 54276:A = 54277
190 POKE W,33:POKE A,50:POKE

54273,30:S = S +1
200 POKE 54273,0:POKE W,32:GOTO 140
210 W= 54276:A = 54277
220 IF K<3 OR K=4 THEN PRINT

TAB(11+ (X -1) . 2)1]
230 IF K=5 THEN PRINT K$;
240 POKE W,33:POKE A,50:POKE 54273,150
250 POKE 54273,0:POKE W.32
260 IF K=1 AND N=10 THEN 290
270 IF K > 3 AND N<LEN(W$(WW)) THEN

70
280 IF K<4 AND N <20 THEN 70
290 IF K> 3 THEN NEXT \MN
300 WW=VAL(MID$(Tl$,3,2))*60

+ VAL(RIGHT$(TIS,2))
310 PRINT ""all$;:PRINT "EIYOUR

TIME WAS1 -VVW"SEC";
320 PRINT -pj NEI MISTAKES MADE:1"S
330 IF K>3 THEN PRINT "gg"TAB(7)

INTO 0*NU/VVVV)" AWORDS PER
MINUTED"

340 PRINT LI$:GOTO 530
350 NU= 0:P= 0:S= 0:FORVVVV= 1

TOMM:W$(WW) = WO$(1NT(RND(1)
*33)+1)

360 IF K=5 AND VON< >7 THEN
W$(WW) = W$(WW) +" ❑ " --

370 NU = NU + LEN(W$(VVW)):NEXT WW:
T1$ = "000000": FOR WW =1 TO MM:
GOTO 60

380 POKE 53280,6:POKE 53281,0:
POKE 198.0

390 PRINT "gm Aggiggigg ggg

g "TAB(15)"OPTIONS
400 FOR Z=1 TO 5:PRINT TAB(13)Z;

":TEST- ;Z:NEXT Z
410 PRINT TAB(12)"A gg ENTER CHOICE?-

 420 GET K$:K=VAL(K$):IF K<1 OR K>5
THEN 420

430 PRINT" ❑ "LIS"U"
440 IF K<3 THEN PRINT "E PRESS THE KEY

INDICATED BY THE ASTERISK"
450 IF K=3 THEN PRINT - CD ❑ TYPE THE

LETTER SHOWN ON THE SCREEN"
460 IF K=4 THEN PRINT - ETYPE THE

WORD THAT APPEARS ON THE
SCREEN";:MM =20

470 IF K=5 THEN PRINT TAB(12)" ❑ TYPE
THESE WORDS - :MM =7

480 PRINT LI$:FOR Z=1 TO 1000:NEXT
490 PRINTTAB(11)"Al PRESS KEY TO

START":POKE 198,0:WAIT 198,1
500 PRINT1'AB(11)" ❑❑❑❑❑❑❑❑

D E"
510 ON K GOTO 50,50,50,350,350
520 GOTO 380
530 FOR Z=1 TO 1000:NEXT Z: GOTO 380
540 DATA ASK,SAD.DAD,GLAD,HAD,

FLASH,FLASK,LASH,SLASH,LAG,HAS,
HAJ,SKA,HAS,HASH

550 DATA DASH,ASS,SHALL,ASH,ALL,
FALL,HAG,GASH,FLAG,JAG,GAL,LASS,
FAG,GAS,GAFF

560 DATA JAH,SASH,AS

10 MODE1
20 DIM A$(32) :VDU23;8202;0;0;0;
30 FOR T=1 TO 32:READ A$(T):NEXT
40 A$="ASDFGHJKL.":A2$=

"ACISODEIFOGDHEIJEIKIL1111;"
50 PRINTTAB(5,15)"WHICH LEVEL DO YOU

WANT (1 -5)";
60 G =GET-48
70 IF G<1 OR G>5 THEN 60
80 ON G GOTO 90,120,150.180,210
90 PROCLEV1
100 PROCANGO
110 GOTO 80
120 PROCLEV2
130 PROCANGO
140 GOTO 80
150 PROCLEV3
160 PROCANGO
170 GOTO 80
180 PROCLEV4
190 PROCANGO
200 GOTO 80
210 PROCLEV5
220 PROCANGO
230 GOTO 80
240 DEF PROCANGO
250 CLS
260 COLOUR3

270 PRINTTAB(10,4)"LEVEL NUMBER - ;TN
280 PRINTTAB(10,6)"TOOK YOU

TM/100;" El SECONDS"
290 IF B=0 THEN B$ = "NO" ELSE

B$ = STRS(B)
300 PRINTTAB(10,8) -AND YOU

HAD111";B$;" LI ERRORS";
310 IF TN =4 OR TN = 5 THENPRINT

TAB(10,10);WM;" ❑ WORDS PER MINUTE"
330 PRINTTAB(5,15)"WHICH LEVEL DO YOU

WANT (1 - 5)";
340 G = GET- 48
350 IF G<1 OR G>5 THEN 340
360 ENDPROC
370 DEF PROCLEV1
380 CLS
390 PRINT""PRESS THE KEY INDICATED BY

THE ASTERISK"
400 B = 0:TN =1
410 COLOUR1
420 PRINTTAB(10,10)A2$
430 FOR T=1 TO 10
440 B2$ = MID$(A$,T,1)
450 COLOUR3
460 PRINTTAB(8+T*2,9)"* -TAB

(8 +T*2,10)132$
470 B$ = GETS:1F T=1 THEN TIME= 0
480 IF B$= B2$ THEN 520
490 SOUND1, - 10,1,1
500 B B + 1
510 GOTO 470
520 COLOUR1
530 PRINTTAB(8+T*2,9)"0"TAB

(8 +T*2,10)B2$
540 SOUND1, -10,200,1
550 NEXT
560 TM =TIME
570 ENDPROC
580 DEF PROCLEV2
590 CLS
600 PR1NT""PRESS THE KEY INDICATED BY

THE ASTERISK"
610 B= 0:TN =2
620 COLOUR1
630 PRINTTAB(10,10)A2$
640 FOR T=1 TO 20
650 P=RND(10):X= P*2+8
660 B2$= MIDS(A$,P,1)
670 COLOUR3
680 PRI NTTAB(X,9)"*"TAB(X,10)B2$
690 B$=GET$:1F T=1 THEN TIME= 0
700 IF B$ < > B2$ THEN SOUND1,10,1,1:

B= B+1:GOTO 690
710 SOUND1, -10,200,1
720 COLOUR1
730 PRI NTTAB(X,9)" L_ "TAB(X,10)B2$
740 NEXT
750 TM =TIME
760 ENDPROC
770 DEF PROCLEV3 2
780 B= 0:TN =3

790 CLS
800 PRINT""PRESS THE KEY SHOWN"
810 FOR T=1 TO 20
820 P = RND(10):B2$ = M1D$(A$,P,1)
830 PRINTTAB(19,15)B2$
840 B$=GETS:IF T=1 THEN TIME= 0
850 IF B$= B2$ THEN SOUND1, -10,

200,1 ELSE SOUND1, -10,1,1:
B= B+1:GOTO 840

860 NEXT
870 TM=TIME
880 ENDPROC
890 DEF PROCLEV4
900 B= 0:TN = 4
910 CLS
920 PRINT'"`TYPE WORD SHOWN ON THE

SCREEN"
930 NC=0
940 FOR T=1 TO 20
950 P= RND(32)
960 B2$=A$(P)
970 NC= NC+ LEN(B2$)
980 PRINTTAB(17,14) B2$" ❑ ❑ El"
990 B$=""
1000 FOR X=1 TO LEN(B2$)
1010 PRINTTAB(16+X,13)" . "
1020 B$ = M1D$(B2$,X,1):B3$= GET$:

IF T=1 AND X=1 THEN TIME=0

1030 IF B$= B3$ THEN SOUND1, -10,
200,1 ELSE SOUND1, -10,1,1:
B= B+1:GOTO 1020

1040 PRINTTAB(16+ X,13)"El"
1050 NEXT
1060 NEXT
1070 TM=TIME
1080 WM = INT(NC*1000/TM + .5)
1090 ENDPROC
1100 DEF PROCLEV5
1110 B = 0:TN = 5
1120 NC=0
1130 CLS
1140 PRINT""TYPE THE WORDS IN

CORRECTLY"
1150 B2$=A$(RND(32))
1160 NC=LEN(B2$)
1170 FOR T=1 TO 6
1180 B2$ = B2$ + "D" +A$(RND(32))
1190 NEXT
1200 PRINTTAB(0,14)B2$
1210 PRINT
1220 NC=LEN(B2$)
1230 FOR X=1 TO LEN(B2$)
1240 B$=GET$:IF X=1 THEN TIME=0
1250 B3$= M1D$(B2$,X,1)
1260 IF B$= B3$ THEN SOUND1,

200,1 ELSE SOUND1, -10,1,1:

B= B+1:GOTO 1240
1270 PRINTB$;
1280 NEXT
1290 PRINT
1300 TM=TIME
1310 WM = INT(NC*1000/TM + .5)
1320 ENDPROC
1330 DATA ASK,SAD,DAD,GLAD,HAD,

FLASH,FLASK,LASH,SLASH,LAG,HAS,
HAJ,JAFFA,SKA,HASH,DASH,ASS,
SHALL, ASH,ALL,FALL,HAG,GASH,
FLAG,JAG, GAL,LASS,FAG,GAS,AS,
JAH,SASH

10 OB$="A ❑ S ❑ D ❑ F ❑ G ❑ H ❑ J ❑
K ❑ L ❑ ;"

20 CLS
30 DIM W$(28)
40 FOR K=1 TO 28
50 READ W$(K)
60 NEXT
70 PRINT@71,"WHICH LEVEL OF"
80 PRINT@101,"DIFFICULTY (1-5) ?"
90 PRINT5165,"TYPE (0) TO QUIT"
100 A$=INKEY$:1F A$ <"0" OR A$ >"5"

THEN 100
110 A= VAL(A$):ON A+1 GOSUB 999,

760 GOTO 360
800 CLS:P$="":FOR K=1 TO 6
810 P$= PS +W$(RND(28))+""
820 NEXT
830 P$= LEFTS(P$,LEN(PS) -1)
840 PRINT" ❑ TYPE THESE WORDS"
850 P=1:PRINT@224,P$
860 A$ = 1NKEY$:IF A$="" THEN 860
870 TIMER = 0:GOTO 890
880 A$=INKEY$:1F AS="" THEN 880
890 IF A$ < > MID$(P$,P,1) THEN

ER = ER +1:SOUND 5,1:GOTO 880
900 POKE 1311 + P,PEEK(1247+ P)
910 SOUND 200,1:P= P+1:IF

P< =LEN(P$) THEN 880
920 T= LEN(P$):GOTO 740
999 CLS:END
1000 CLS:PRINT"PRESS THE KEY

INDICATED BY THEO 0 0 0 ❑

ASTERISK"
1010 PRINT@262,013$
1020 FOR K=1 TO 1000:NEXT
1030 RETURN
1100 POKE AP,106
1110 A$=INKEY$:IF A$= "" THEN 1110
1120 IF K=1 THEN TIMER-0
1130 IF (ASC(A$)0R64)< > PEEK

(AP + 32) THEN SOUND 5,1:ER=
ER +1:GOTO 1110

1140 SOUND 200,1
1150 POKE AP,96
1160 RETURN
9000 DATA ASK,SAD,DAD,GLAD,HAD,

LASH,LAG,HAS,HASH,DASH,ASS,ASH,
HAG,ALL,JAG,FAG,GAS

9010 DATA HALF,FALL,GASH,FLAG,
LASS,SASH,FLASK,SLASH,FLASH,
SHALL,JAFFA

200,300,400,600,800
120 ER=0
130 GOTO 70
200 GOSUB1000
210 AP =1252
220 FOR K=1 TO 10
230 AP= AP + 2
240 GOSUB 1100
250 NEXT
260 CLS:PRINT@448,"TIME =";

TIMER/50;"SECONDS"
270 PRINT"NUMBER OF ERRORS

=";ER;
280 RETURN
300 GOSUB 1000
310 FOR K=1 TO 20
320 AP=1252+2"RND(10)
330 GOSUB 1100
340 NEXT
350 CLS
360 PRINT@448,"TIME =";

TIMER/50;"SECONDS"
370 PRINT"NUMBER OF ERRORS

-";ER;
380 RETURN
400 CLSO:PRINT" OTYPE THE LETTER

SHOWN ON THE 0 0 0 CIO 0 0
SCREEN"

410 PRINT@206," ❑ ❑ ❑ ";:PRINT@238,
"El ❑ 0";:PRINT@270,"E ❑ E";

420 FOR K=1 TO 20
430 P$ = MIDS(OBS,2*RND(10) -1,1)
440 PRINT@239,PS;
450 AS = INKEY$:IF AS = "" THEN 450
460 IF K=1 THEN TIMER = 0
470 IF A$< > P$ THEN SOUND 5,1:

ER = ER + 1:GOTO 450
480 POKE 1263,128
490 SOUND 200,1
500 NEXT
510 GOTO 350
600 CLS:PRINT" ❑ TYPE THE WORD THAT

APPEARS"
610 T=0
620 FOR K=1 TO 10
630 P$ =W$(RND(28))
640 T=T+ LEN(PS)
650 PR1NT@237,P$
660 P=1
670 POKE 1228+ P,106
680 A$ =INKEYS:IF A$ = "" THEN 680
690 IF K=1 THEN TIMER = 0
700 IF AS < > MID$(P$,P,1) THEN

ER ER +1:SOUND 5,1:GOTO 670
710 POKE 1228+ P,96
720 SOUND 200,1:P= P+1:IF

P< = LEN(P$) THEN 670
730 NEXT
740 CLS
750 PR1NT@416, USING"WORDS PER

MINUTE = # # # .# # ";7500/TIMER

The very first stage in writing an
adventure is to work out the general
story line and draw a rough map of
all the locations. This then forms the
basis of the whole program

It is essential to work out the whole story
before you start programming. If you don't,
you're likely to have lots of difficulty, with
many bugs and loose ends to tie up.

To see how it's done, the next few articles in
INPUT's Games Programming course follow
the development of a typical (although neces-
sarily very short) adventure program. The idea
for the INPUT adventure is set in some far-
away land where the player has to recover the
fabled lost eyeball of the purple icon. If you
follow all the steps in writing this adventure
you'll quickly see how to write your own.

THE STORY
You have to design a world that will fit in with
the broad storyline. Suitable objects, and roles
for them have to be found and puzzles have to
be devised.

You don't need to work all this out at once,
because as the adventure is thought about,
more and more of the story becomes worked
out and the details start to slot into place. So
start by roughing out the storyline.

The player in the INPUT adventure is in
dire financial difficulty, and has set out on a
quest to find the fabulous (and very valuable)
eyeball that is hidden somewhere in the world
of the adventure. Unfortunately the Inland
Revenue has sent a tax inspector in pursuit.
The tax inspector's role in the adventure is
somewhat like the pirate's role in many other
adventures—namely, to wreak havoc on the
poor adventurer. If the tax inspector does
appear, one of two things can happen. If you
are carrying an object, he will take it to offset
your huge tax bill, but if you haven't yet found
anything (and therefore can't pay), he locks
you in a deep dungeon.

So much for the bare bones of the idea. Now
you should fill in some of the details—like
what objects are to be found on the quest. In
the INPUT adventure, we have decided that
the usual rule of collecting all the objects in

an adventure will be upset.
This time, not all of the objects \
are advantageous to the quest—in
fact one object will have no function
at all. Or almost no function—it is a
heavy weight (a brick, for example)
that kills you if you try to swim the river.

The most important object of all is the
eyeball, and to add interest, some way to hide
or disguise it has to be devised. It could be
hidden inside a chest or a vault, but in fact a
more cunning way of fooling the adventurer
has been chosen. Instead of hiding the eyeball
in a place that obviously would contain some-
thing very valuable, it will be concealed in a
bag of marbles. Any attempt to play marbles
will not get the adventurer anywhere!

A favourite device in adventure games is the
darkened room in which all kinds of horrible
things can happen—and this adventure is no
exception. Without a lamp—to be found else-
where in the adventure—the poor adventurer
won't be able to see the exits and will be stuck.
This may be a little unfair because no warning
of impending doom is given, and there is no
way for the player to get out of the darkened
room unless he has already found the lamp.

To counteract the attentions of the tax
inspector, and give the adventurer a better
chance, a weapon will be hidden somewhere in
the adventure—either a gun or a knife perhaps.

Finally, just for fun, there is a throne room
and a chain. The throne room is not quite what
it seems. In fact, if you are not carrying the

eyeball, the throne in
question is a toilet! Pulling N
the chain will flush you
away, and hasten you out of the
adventure.

One thing remains to be sorted out—ti*
most important of all, the conditions for
winning the game. There is no obvious exit
from the world, and part of the puzzle is how to
escape with the eyeball.

To win the game, the adventurer must ob-
viously have found the eyeball—not just the
bag of marbles. To make it more difficult, the
adventurer must also be in the throne room.
Pulling the chain this time will not flush the
adventurer down the loo!

The advantage of making the way out also a
hazard under different conditions, is that it is
likely to discourage the wary player from
trying it too often, thus prolonging the play.

■ 	THE STORY LINE
■ DRAWING A MAP
■ FROM MAPS TO GRIDS
■ PROGRAMMING THE EXITS

■ ENTERING THE LOCATION
DESCRIPTIONS IN SUBROUTINES

■ DIFFERENT TYPES OF GRIDS
■ PLANNING CHARACTERS, OBJECTS

AND LOCATIONS

THE STORY SO FAR ...
At this stage, a re-cap is in order

—before you lose track of the
themes, which are already becoming

complicated. It may even be worth
making a list before you start mapping.

In the INPUT adventure, this might
!look something like this:

FCHARACTERS:
• Adventurer
• Tax Inspector—should appear at random
OBJECTS:
• Eyeball—hidden in a bag of marbles
• Brick—red herring that kills adventurer

if he attempts to swim river
• Lamp—necessary to find the way out

of a darkened room
• Gun—weapon to kill Tax Inspector
• Chain—in throne room
LOCATIONS:
• River
• Darkened room
• Throne room

FOREST

So far, the adventure has only fixed three of
the locations because of things which need to
take place there. You might well have decided
upon more by this stage. But whatever the
case, your next step is to fit all these themes
together in a map of the adventure world.

STARTING MAPPING
Your first map will probably consist simply of
a series of boxes, connected by arrows, rather
like fig. 1. Each of the boxes represents a room
or location in the world—location is probably
the better term because you are not confined
indoors with your adventures, and the location
might be anything from on top of a pinhead in
the queen's hem to a large plain, stretching as
far as the eye can see. You will need to
incorporate all the locations in your prelimi-
nary list, plus others to tie the game together.

When you are drawing this map remember
to mark in the directions that you can go from
each room, because you may wish to have exits
which only work in one direction—
accompanied by a message such as

THE DOOR SLAMS SHUT BEHIND YOU

The dotted lines leading from the Dark
Room indicate that the adventurer will only be
able to go in that direction if certain conditions
are satisfied. In this case, the condition is that

location descriptions should be kept short at
this stage. The links have been drawn in, and
the starting point has been decided. This is
quite important as it affects the way the
adventure is tackled, and the order in which
the objects are found and the puzzles
attempted.

The objects are also marked in their loc-
ations. The objects that will appear later on,
for example, the eyeball, are best listed at the
side of the map.

FROM MAPS TO GRIDS
Once the map has been completed, the inform-
ation can be transferred on to a grid.

There are two forms of grid commonly used
when planning adventure games: one based on
squares as in fig. 2, and one based on octagons
as in fig. 3. Which type you use will depend on
the number of possible exits from each of the
locations.

The simplest kind of adventures only call
for you to exit from rooms in four directions:
North, South, East and West (as in the eyeball
adventure). If your adventure uses this range
of exits, then you should transfer the inform-

GUN—ON
OPPOSITE BANK

RIVER

ation to the square grid so that it matches the
conditions on your map. How this is done is
developed in detail below. If you have used
exits including Northeast, Northwest, South-
east and Southwest, you should use the octag-
onal grid, but this kind of grid system is very
complicated.

The final variation on the grid is if you have
chosen to move up and down as well. In this
case the best solution is to use a separate grid
for each 'level' of the adventure.

The eyeball adventure is based on the
square type of grid—allowing exits to the
North, South, East and West only. Unless
there is a real need for other directions this
kind of adventure is quite adequate, and there
is a way of 'fiddling' up and down directions. If
you use a description including a phrase like:

THERE IS A STAIRCASE DESCENDING TO THE
WEST

you can use the normal West response and
routine instead.

OUTSIDE
BAG OF MARBLES
EYEBALL—in bag.

DUSTY ROOK

the adventurer has the lamp and has lit
it so that he can see the exits.

It is very difficult to predict quite how many
locations you will be able to fit into a given
amount of RAM. The difficulty arises because
there are so many things competing for mem-
ory space in an adventure program—room
descriptions, the words you wish the program
to recognise, the number of objects and what
you want to do with them, the number of
puzzles and their complexity, and so on.

Once you have written a few small adven-
tures and checked how much memory is
occupied—see page 268—you'll have some
idea of what will fit in your machine.

Owners of 16K computers will soon dis-
cover that it is almost impossible to write a
large-scale adventure in such a small amount
of RAM. However the adventure which you
will see developed over the next few issues of
INPUT has only a small number of rooms-
12 in fact—and therefore is too small to cause
any headaches.

A map for the Quest for the Jewelled
Eyeball would look like that in fig. 1. The

1. The first map of the adventure shows
all the planned locations in their relative
positions. The solid arrows indicate
exits which are open at all times,

ENTRANCE HALT

but the striped arrows indicate exits
which can only be used under special
conditions—in this case when the lamp
has been lit

BRICK 	PATH 	 GATE

LAMP CHAIN

THE GRID
This adventure will need a grid of six squares
by four squares—check this by counting the
maximum number of locations on your map,
up and down and right to left. Before you start
transferring all the details to the grid, make
sure that you have numbered each of the
squares. Start at number 1 in the top left, and
work through to the bottom right.

Once the squares have been numbered and
the room details transferred, the grid appears
as in fig. 4 (overleaf).

STARTING THE PROGRAM
Now that you have a story line and a completed
grid you can start on the program.

The first stage is to type in the location
descriptions, based on your grid. You must
decide how long these are going to be. Aim to
convey as much of the atmosphere of the ad-
venture as possible without wasting memory.

Along with the location descriptions the

computer must be told in which directions the
exits are in.

At last, here are the first sections of
program. The high line numbers are to allow
plenty of space for earlier program sections as
you develop the game.

Type your section in and SAVE it on tape:

a
5000 REM **LOCATION DESCRIPTION**
5010 REM — LOCATION 4 —
5020 PRINT "YOU ARE OUTSIDE A LARGE

BUILDING"
5030 LET N=0: LET E= 0: LET S=1:

LET W=0: RETURN
5040 REM "LOCATION 7"
5050 PRINT "YOU ARE BY A FAST-

FLOWING RIVER"
5060 LET N=0: LET E =1: LET S=0:

LET W=0: RETURN
5070 REM "LOCATION 8"
5080 PRINT "YOU ARE IN A PETRIFIED

FOREST"

DARK ROOM

5090 LET N=0: LET E= 0: LET S=1:
LET W=1: RETURN

5100 REM "LOCATION 10**
5110 PRINT "YOU ARE IN A DUSTY ROOM"
5120 LET N=1: LET E=1: LETS=1:

LET W=0: RETURN
5130 REM "LOCATION 11"
5140 PRINT "YOU ARE IN A DARK ROOM"
5150 IF LA< >1 THEN LET N=0: LET

E=0: LET S=0: LET W=0:
PRINT "IT IS TOO DARK TO SEE THE
EXITS": LET DA = 1: RETURN

5160 LET N=0: LET E = 0: LET S=1:
LET W=1: RETURN

5170 REM "LOCATION 14**
5180 PRINT "YOU ARE ON A MUDDY PATH"
5190 LET N=1: LET E= 1: LET S=0:

LET W=0: RETURN
5200 REM "LOCATION 15"
5210 PRINT "YOU ARE BY THE GATE TO

THEE ❑ ❑❑❑❑ HIDDEN CITY"
5220 LET N = 0: LET E =1: LET S=0:

LET W=1: RETURN
5230 REM "LOCATION 16"
5240 PRINT "YOU ARE IN THE ENTRANCE

HALL"
5250 LET N=1: LET E=1: LET S=1:

LET W=1: RETURN
5260 REM "LOCATION 17"
5270 PRINT "YOU ARE IN THE COURTYARD"
5280 LET N=1: LET E=1: LET S=0:

LET W=1: RETURN
5290 REM "LOCATION 18"
5300 PRINT "YOU ARE IN THE GARDEN"
5310 LET N=0: LET E= 0: LET S=1:

LET W=1: RETURN

GARDEN

COURTYARD

CUPBOARD THRONE ROOM

2. A small part of a square-based grid on
which to plan adventures using four
exits so that you can go to the north,
south, east and west

5320 REM — LOCATION 22 —
5330 PRINT "YOU ARE IN THE CUPBOARD"
5340 LET N =1: LET E= 0: LET S = 0:

LET W= 0: RETURN
5350 REM **LOCATION 24 —
5360 PRINT "YOU ARE IN THE THRONE

ROOM"
5370 LET N=1: LET E= 0: LET S=0:

LET W= 0: RETURN

Vic 20 owners will have to add some spaces so
that the PRINT statements format correctly on
the Vic's 22 column screen.

5000 REM ** LOCATION DESCRIPTION **
5010 REM ** LOCATION 4 —
5020 PRINT "YOU ARE OUTSIDE A LARGE

BUILDING"
5030 N = 0:E = 0:S= 1:W = 0:RETURN
5040 REM ** LOCATION 7 **
5050 PRINT "YOU ARE BY A FAST-

FLOWING RIVER"
5060 N = 0:E =1:S = 0:W = 0:RETURN
5070 REM ** LOCATION 8 —
5080 PRINT "YOU ARE IN A PETRIFIED

FOREST"
5090 N= 0:E= 0:S = 1:W= 1:RETURN
5100 REM ** LOCATION 10 —
5110 PRINT "YOU ARE IN A DUSTY ROOM"
5120 N=1:E=1:S=1:W=0:RETURN
5130 REM ** LOCATION 11 —
5140 PRINT "YOU ARE IN A DARK ROOM"
5150 IF OB(6) < > —1 OR LA< >1 THEN

N= 0:E = 0:S =0:W= 0
5155 IF OB(6) < > —1 OR LA< >1 THEN

PRINT "IT'S TOO DARK TO SEE THE
EXITS":RETURN

5160 N= 0:E= 0:S= 1:W= 1:RETURN
5170 REM — LOCATION 14 —

3. A small part of an octagonal grid—
used when you want to include exits that
go to the north west, north east, south
west and south east

5180 PRINT "YOU ARE ON A MUDDY PATH"
5190 N =1:E= 1:S= 0:W= 0:RETURN
5200 REM — LOCATION 15 —
5210 PRINT "YOU ARE BY THE GATE TO THE

HIDDEN CITY."
5220 N = 0:E= 1:S = 0:W =1:RETURN
5230 REM ** LOCATION 16 '—
5240 PRINT "YOU ARE IN THE ENTRANCE

HALL"
5250 N=1:E=1:S=1:W=1:RETURN
5260 REM — LOCATION 17 —
5270 PRINT "YOU ARE IN THE COURTYARD"
5280 N =1:E= 1:S = 0:W= 1:RETURN
5290 REM ** LOCATION 18 **
5300 PRINT "YOU ARE IN THE GARDEN"
5310 N = 0:E= 0:S=1:W= 1:RETURN
5320 REM — LOCATION 22 —
5330 PRINT "YOU ARE IN THE CUPBOARD"
5340 N = 1:E = 0:S= 0:W = 0:RETURN
5350 REM ** LOCATION 24 —
5360 PRINT "YOU ARE IN THE THRONE

ROOM"
5370 N =1:E= 0:S=0:W= 0:RETURN

El IC ill
For the Acorn machines, the spaces in Line
5210 should be omitted.

5000 REM**LOCATION DESCRIPTION**
5010 REM — LOCATION 4-
5020 PRINT "YOU ARE OUTSIDE A LARGE

BUILDING"
5030 N = 0:E= 0:S = 1:W= 0:RETURN
5040 REM **LOCATION 7-
5050 PRINT "YOU ARE BY A FAST-

FLOWING RIVER"
5060 N = 0:E =1:S= 0:W= 0:RETURN
5070 REM — LOCATION V*
5080 PRINT "YOU ARE IN A PETRIFIED

FOREST"

5090 N =0:E= 0:S=1:W= 1:RETURN
5100 REM — LOCATION 10 —
5110 PRINT "YOU ARE IN A DUSTY ROOM"
5120 N =1:E= 1:S =1:W = 0:RETURN
5130 REM — LOCATION 11 -
5140 PRINT "YOU ARE IN A DARK ROOM"
5150 IF OB(6) < > —1 OR LA< >1 THEN

N = 0:E = 0:S = 0:W = 0:PRINT"IT IS
TOO DARK TO SEE THE EXITS ": RETURN

5160 N = 0:E= 0:S=1:W= 1:RETURN
5170 REM — LOCATION 14“
5180 PRINT "YOU ARE ON A MUDDY PATH"
5190 N =1:E= 1:S = 0:W= 0:RETURN
5200 REM **LOCATION 15 —
5210 PRINT "YOU ARE BY THE GATE TO

THELID DOD ❑ HIDDEN CITY"
5220 N = 0:E =1:S =0:W= 1:RETURN
5230 REM — LOCATION 16**
5240 PRINT "YOU ARE IN THE ENTRANCE

HALL"
5250 N =1:E= 1:S=1:W= 1:RETURN
5260 REM — LOCATION 17 —
5270 PRINT "YOU ARE IN THE COURTYARD"
5280 N =1:E= 1:S = 0:W= 1:RETURN
5290 REM**LOCATION 18**
5300 PRINT "YOU ARE IN THE GARDEN"
5310 N = 0:E= 0:S=1:W= 1:RETURN
5320 REM **LOCATION 22 —
5330 PRINT "YOU ARE IN THE CUPBOARD"
5340 N = 1:E = 0:S = 0:W = 0:RETURN
5350 REM — LOCATION 24-
5360 PRINT "YOU ARE IN THE THRONE

ROOM"
5370 N = 1:E = 0:S = 0:W= 0:RETURN

Don't worry about the liberal use of memory-
eating REM statements. At this early stage of
program development it is very important to
know what each piece of program does, or
which location number a particular description
refers to. They can always be removed later.

After each location description line, there is
another line containing information about the
possible exits from the location. The variables
N, S, E, and W refer to North, South, East and
West. These variables can take one of two
values-0 means that there is no exit in that
direction, whilst 1 means that there is an exit.

Finally, there is a RETURN after each section
of this program because each location descrip-
tion will be called by a GOSU B.

The extra IF ... THEN in the Dark Room
section tests if the adventurer has the lamp, but
a description of the variables will be covered
later when objects are discussed.

Next time you'll see how to move the
adventurer round the locations.

4. The final stage before starting to
program. The grid is a direct copy of the
map into a form that's easy to work from

DUSTY
ROOM

GARDEN ,

FOREST

ENTRANCE
HALL

THRONE
ROOM

OUTSIDE
DARK
ROOM

COURTYARD

GATE
RIVER

CUPBOARD

PATH

In Part 1 of this series of articles, on pages 250
to 257, you looked at some of the mathematical
and angular functions available on your com-
puter. These have already proved themselves
to be very valuable tools for a range of graphics
applications. Now, let's look closer at how they
work, and at some more possible uses for them.

The functions of particular interest at this
point are the sine and cosine, and if you are
not already familiar with these, you should
look through the first article.

In that article, you saw how the functions
can be related to the position of a point around
the circumference of a circle, and how to use
them to work out the coordinates of any point.
The compass program on pages 252 and 253
used this to PRINT the numbers marking the
directions in their correct positions around the
compass face.

DRAWING A CLOCK
So far, none of the programs has done any-
thing that has much practical application,
whereas in fact there is a whole range of uses
for the trigonometrical functions. Future art-
icles will cover these in more depth, but for
the moment, let's have a look at how to draw a
clock. You should by now have a very good
idea of how one could be drawn.

The principle is very similar to the compass
face, except that instead of you IN PUTing a
number which is then shown on the circle, the
computer needs to select the angles for itself,
increasing with time.

The programs which follow do just that.
They calculate the positions of the clock
hands, using SIN and COS, to show the correct
time.

Although it would be easy enough to draw a
normal 12 hour clock, this program draws a 24
hour one which has numbers from 1 to 24
around the face. This is because it gives more
opportunity to examine the routines which
PRINT the numbers. After you have typed and
RUN it we shall look at exactly what SIN and
COS are doing.

In the compass program, numbers were
printed around the circle to mark the various
degrees. The clock program prints numbers
around the circle to mark the time, in other
words numbers from 1 to 24. These are set up

■ DRAWING A CLOCK
■ POSITIONING NUMBERS ROUND

THE CLOCK FACE
■ DRAWING THE HANDS
■ ADDING AN ALARM

■ ADDING ROMAN NUMERALS TO
THE CLOCK

■ DRAWING SPIRALS
■ USING SIN AND COS TO DRAW

MORE ELABORATE PATTERNS

by a FOR ... NEXT loop and PRINTed at
coordinates determined by SIN and COS,
STEPping to 24 points around the circle.

Part of the Dragon and Tandy program may
seem familiar to you if you have used the
routine for DRAWing characters on the screen
which was given on page 191. It is repeated in
this program because the computer cannot
PRINT on the screen while in PMODE 4—so it is
used to place the numbers around the
clockface.

If you SAVEd this routine from the earlier
article, you can LOAD it into your computer to
avoid having to retype it, then add the extra
lines in the program below.

The same routine would also work to add
numbers or directions to the compass program
covered earlier, and you may like to try
adapting the program accordingly.

When the face is drawn, the computer
draws a line automatically, showing the second
hand of a clock.

The angle it draws starts at 0 degrees, or the
top of the clock face, and gradually gets larger
until it has reached 360 degrees, or back to the
top again in the same way as the second hand
of a clock. The speed at which it STEPs is
governed by a PAUSE command or by the
timer in the computer.

The clock's hands are moved using a FOR
... NEXT loop on the Commodore and Spec-
trum. The Acorn, Dragon and Tandy
programs use a variable which is updated by
the timer each time that the program is run
through (the program is a continuous loop).
The second hand moves round every time the
variable shows that one second has passed.

5 CIRCLE 134,92,70
6 LET q = —1
10 FOR n =1 TO 24
20 PRINT AT 10 — 10*COS (n/12*PI),

16+ 10*SIN (n/12*P1),n
30 NEXT n
40 FOR t= 0 TO 20000
50 LET a = t/30*PI
60 LET sx = 65*SIN a: LET sy=

65*COS a
70 PLOT 134,92: DRAW OVER 1;sx,sy
80 PAUSE 42

90 PLOT 134,92: DRAW OVER 1;sx,sy
100 NEXT t

10 HIRES 0,1
20 CIRCLE 160,100,100,100,1
30 T = 0
40 FOR X=15 TO 360 STEP 15:T= T + 1
50 TEXT 145 + 90*SIN(X/180*n),98

— 90*COS(X/18(rn),STR$(T), 1,1,10
60 NEXT X
70 T= 6:11 = 357:T2 = 345:C =12:

C1 = 354:C2 = 330
80 A = C/180*n
90 LINE 160,100,60*SIN(A) + 160,

100 — 60•COS(A),0
100 A = T/18(rn
110 LINE 160,100,60*SIN(A) +160,

100 — 60*COS(A),1
120 C=T:T=T+ 6:IF T> 360 THEN

T =1:C1 =T11-1 =T1 +3:1F T1 =
>360 THENT1 = 0:C2 = T2:T2 = T2 + 15

130 IF 12>360 THEN T2=.1
140 A= C1/180*n
150 LINE 160,100,55*SIN(A) +160,

100 — 55*COS(A),0
160 A= T1/180*n
170 LINE 160,100,55*SIN(A) + 160,

100 — 55*COS(A),1
180 A= C2/180* n
190 LINE 160,100,40*SIN (A) +160,

100 — 40*COS(A),0
200 A = T2/180*n
210 LINE 160,100,40*SIN(A) + 160,

100 — 40*COS(A),1
220 GOTO 80

10 GRAPHIC 2
20 K = 6
30 FOR Z= n/12 TO 2*nSTEPn/12:

K= K+1:IFK>24THENK=1
40 CHAR 10 + 9*SIN(Z),9 + VCOS(Z),

STR$(K):NEXT
50 CHAR 1,9,"24"
60 CIRCLE 1,540,500,351,351
70 T=6:11 = 357:T2= 345:C=12:

Cl = 354:C2 = 330
80 A= C/180* n
90 DRAW 0,540,500 TO 200*SIN(A)

+ 540,500 —200*COS(A)

100 A= T/180*n
110 DRAW 1,540,500 TO 200*SIN

(A) + 540,500 —200*COS(A)
120 C = T:T = T + 3:IFT > 360THEN

T = 1:C1 = T1:T1 = T1 + 3:IFT1
= >360THENT1 = 0:C2= T2:
T2 = T2+15

130 IF T2>360 THEN T2=.1
140 A= C1/180*n
150 DRAW 0,540,500 TO 200*SIN

(A) + 540,500 —200*COS(A)
160 A= T1/180*n
170 DRAW 1,540,500 TO 200*SIN

(A) + 540,500 —200*COS(A)
180 A= C2/180*n
190 DRAW 0,540,500 TO 150*SIN

(A) + 540,500 —150*COS(A)
200 A = T2/180* n
210 DRAW 1,540,500 TO 150*SIN

(A) + 540,500 —150*COS(A)
220 GOTO 80

10T=1
20 MODE1
30 GCOL3,3
40 MOVE 680,782

50 FOR A=0 TO 2*PI STEP .05
60 DRAW680 +270*COS(A+ PI/2),

512 +270*SIN(A+ PI/2)
70 NEXT
80 VDU5
90 FOR A= 2* PI — PI/12 TO 0 STEP— PI/12
100 MOVE650 +310*COS(A+ PI/2),

525 + 310*SIN(A + PI/2)
110 PRINT;T:T = T+ 1
120 NEXT
130 T= 0:TIME= 0:TM = 0:TH =0
140 MOVE680,512
150 DRAW 680 +200*SIN(P1/60*TH),

512 + 200*COS(PI/60*TH)
160 MOVE680,512
170 DRAW 680 +250*SIN(P1/30*TM),

512+ 250*COS(PI/30*TM)
180 MOVE680,512
190 DRAW 680 +150*SIN(P1/3rT),

512 + 150*COS(PI/30*T)
200 REPEAT
210 MOVE680,512
220 DRAW 680 +150*SIN(PI/30*T),

512 +150*COS(131/30*T)
230 MOVE680,512
250 T= TIME/100
260 DRAW 680 +150*SIN(P1/307),

512 +150*COS(P1/30 .1)
270 IF TIME> 6000 THEN PROCMIN:

TIME= TIME — 6000
280 UNTILO
290 DEF PROCHOUR
300 MOVE680,512
310 DRAW 680 +200*SIN(P1/36*TH),

512 +200*COS(P1/36*TH)
320 TH =TH +1
330 MOVE680,512
340 DRAW 680 +200*SIN(P1/36*TH),

512+ 200 . COS(P1/36 .TH)
350 ENDPROC
360 DEF PROCMIN
370 MOVE680,512
380 DRAW 680 +250*SIN(P1/30*TM),

512+ 250*COS(PI/30*TM)
390 TM =TM +1
400 MOVE680,512
410 DRAW 680 +250*SIN(P1/30*TM),

512 + 250*COS(PI/30*TM)
420 IF (TM MOD 20) = 0 THEN

PROCHOUR
430 IF TM >59 THEN TM =0
440 ENDPROC

NC 11
10 PMODE 4,1
20 DIM LE$(26)
30 PCLS
40 FOR K=0 TO 26:READ LE$(K):NEXT
50 FOR K=0 TO 9:READ NU$(K):NEXT
60 DATA BR2,ND4R3D2NL3ND2BE2,

ND4R3DGNL2FDNL3BU4BR2,
NR3D4R3BU4BR2,ND4R2FD2
GL2BE4BR,NR3D2NR2D2R3
BU4BR2

70 DATA NR3D2NR2D2BE4BR,NR3D4R3
U2LBE2BR,D4BR3U2NL3U2BR2,
ND4BR2,BD4REU3L2R3BR2,
D2ND2NF2E2BR2

80 DATA D4R3BU4BR2,ND4FREND4BR2,
ND4F3DU4BR2,NR3D4R3U4BR2,
ND4R3D2NL3BE2,NR3D4R3NHU4BR2

90 DATA ND4R3D2L2F2BU4BR2,BD4R3
U2L3U2R3BR2,RND4RBR2,D4R2
U4BR2,D3FEU3BR2,D4EFU4BR2

100 DATA DF2DBL2UE2UBR2,DFND2EUBR2,
R3G3DR3BU4BR2

110 DATA NR2D4R2U4BR2,BDEND4BR2,
R2D2L2D2R2BU4BR2,NR2BD2NR2B
D2R2U4BR2,D2R2D2U4BR2,NR2D2
R2D2L2BE4,D4R2U2L2BE2BR2,
R2ND4BR2,NR2D4R2U2NL2U2
BR2,NR2D2R2D2U4BR2

200 MX =127:SX=127:MY = 95:
SY =95

210 SCREEN 1,1
220 CIRCLE(127,95),60,1
230 PI = ATN(1)/15
240 FOR K=5 TO 120 STEP 5

250 LINE(127 + 55*SIN(K*PI),95 — 55
*C0S(K*P1)) — (127 + 59*SIN

PI),95 — 59*COS(K*PI)),PSET
260 A$ = M1D$(STR$(K/5),2): DRAW

"BM" + STR$(1NT(123 + 68*SIN
(K* PI))) + "," + STR$(INT(92
— 68*COS(VPI))) + "C5S6":
GOSUB 1000

270 NEXT K
280 IF TIMER <50 THEN 280
290 TIMER = 0:T = T + 1
300 IF T = 86400 THEN T = 0
310 H = T/3600
320 M = T/60 — INT(H)10
330 S = T— I NT(M)*60 —INT(H)*3600
340 LX = SX:LY = SY
350 SX = 127 + 45*SIN(S*P1 . 2):

SY = 95 — 45*COS(S*P1*2)
360 LINE(127,95) — (SX,SY),PSET

/ 370 LINE(127,95) — (LX,LY),PRESET
380 LINE(127,95) — (MX,MY),PRESET
390 MX=127 + 30*SIN(M*PI*2):MY=

95 — 30*COS(M*PI*2)
400 LINE(127,95) — (MX,MY),PSET
410 LINE(127,95) — (HX,HY),PRESET
420 HX= 127 + 20*SIN(H*PI*5):HY=

95 — 20*COS(H*PI*5)
430 LINE(127,95) — (HX,HY),PSET
440 GOTO 280
1000 FOR M =1 TO LEN(A$)
1010 B$ = MID$(A$,M,1)
1020 IF B$> = "0" AND B$< = "9" THEN

DRAW NU$(VAL(B$)):GOTO 1050
1030 IF B$ = " " THEN N = 0 ELSE

N ASC(B$) —64
1040 DRAW LE$(N)
1050 NEXT
1060 RETURN

The ZX81 does not have a command to DRAW
a line, and so would have to PLOT each point of

the clock's hands separately. Since the reso-
lution of its screen is not as high as the other
machines', the ZX81 version would be less
than good, so there is no version of this
program for the ZX81.

Chapter 19 of the ZX81 manual gives a
clock program for the ZX81 which you can use
as an example, but this clock has no hands.
The outline of this clock is just the numbers
marking the time: there is no circle around its
edge as there is in the programs above.

The Commodore 64 program is in Simons'
BASIC, since a version in normal Commodore
BASIC would be very complicated; you thus
need a Simons' BASIC cartridge plugged in to
your machine. This also applies to the other
Commodore 64 programs in this article.

The Commodore Vic 20 program is written
using the 'Super Expander' cartridge, and will
not RUN unless this cartridge is plugged in.
This is because the standard graphics com-
mands on the Vic are too complicated to be
used for drawing circles easily. This also
applies to the other Vic programs in this
article.

Each version of this program uses a very
similar routine to PRINT the numbers at their
correct positions around the clock face, and
this routine shows clearly the way that SIN
and COS can be used to control PRINTing
operations.

This routine takes a form something like:

10 FOR n =1 TO 24
20 PRINT AT(x coordinate of screen

centre + 10*SIN (rit/n)),y coordinate of
screen centre —10*COS (rir/n));n

30 NEXT n

Each of the computers handles this in a slightly
different way, and these may make the routine
seem more complicated than it actually is. For

example, they may set up an extra variable for
the angle, rather than using (2* n/n) in the
PRINT AT statement. The routine for the
Spectrum follows the same formula as those
for the other computers, but looks different.
The reason for this is that the Spectrum uses a
slightly different method of PRINTing AT a
location on the screen: instead of the first
number after the command being the x coordi-
nate, it is the y coordinate. What is more, a
value of 0 for this number is not, as usual, at
the bottom of the screen, but at the top. To see
this on the Spectrum, try:

PRINT AT 0,0;"a"

You should see an 'a' PRINTed at the top left
hand corner of the screen.

Because of this peculiarity of the
Spectrum's PRINT AT command, the COS is the
first function in the line: since it is COS which
gives the vertical position of the point around
the circle's circumference.

If you compare the example above with the
actual programs, you will notice that the FOR
... NEXT loop governing the PRINT command
is different for each version. In fact this need
not be the case, as each different loop would
work on any of the computers but the dif-
ferences were chosen for convenience on each
machine's operating system.

The aim of the routine is to PRINT numbers
from 1 to 24 to mark the time around the clock
face. So the Spectrum program's loop is

FOR n =1 TO 24
NEXT n

Within the loop, the routine calculates the
PRINT AT positions each time the Spectrum
goes through the loop, by dividing a complete
circle into 24 segments.

A Spectrum 24 hour clock Moving spirals on the Spectrum

The Dragon and Tandy do the same as the
Spectrum except that their program looks
slightly different because they have to use a
special routine for DRAWing letters on the
graphics screen.

So the Dragon and Tandy do not actually
PRINT a number related to the STEP that
controls their angular position. Instead, what
they PRINT is called up by the command STR$
in fte-Jjne that controls the PRINTing. ST4
simply refers back to the special DRAWing
routine and has nothing to do with where the
numbers are drawn, which is controlled by the
variable K.

Unlike the loops 	these machines, which
just go through 24

N
 teps, the Acorn and

Commodore loops both •
teps,

 measurements
of a circle.

The Commodore loops (one for the Vic and
another for the Commodore 64) are both doing
the same thing. The Vic loop is counting in
radians, though, while the 64's loop counts in
degrees. The Acorn version counts in radians.

As you know, there are 360 degrees in a
circle. So to get 24 numbers PRINTed around
the clock-face, at equal intervals, the ners
must be placed at 360/24 degree (15°) gap . In gap
the same way, as there are 2*PI radians in a
complete circle, the numbers must be pla d at
gaps of 2*PI/24, or PI/12 radians. t

Note that in all of the loops, the 'first
number is not 0, but the first STEP up (1 ott the
Spectrum, 5 on the Dragon, 15 on the C m-
modore 64, and PI/12 on the Acorn and is
20). This is so that the firstinumber will be
PRINTed, or on the Dragon, DRAWn, at th 1
o'clock„not the 24 o'clock position.

Sincthe Commodore and Acorn version '
FOR ... EXI. loops do not contain the inform
ation tha is PRINTed, in other words the
numbers

\
to 24, but only affect where it is

PRINTed, something must be included to tell
the computer what to PRINT. So, a variable is
used: T on the Acorn and Commodore 64
versions, and K on the Vic 20 program.

Every time that the computer RU Ns through
this loop, the variable is increased by 1: so that
the next number placed on the screen will be
the correct next number around the clock-face.

The remainder of the program works in this
way using SIN and COS to calculate the
\positions of, the clock hands, and either a

variable of the computer's built-in Omer t9
keep track of the time so that the second hadd
actually moves once every second.

CALLING UP DATA
You can use a different method of telling the
computer what to PRINT to the method used in
the clock programs: you can store the numbers
in a DATA sta ment and READ them one at a
time as the co uter goes through the FOR . . .
NEXT loop.

While this 	seem an unnecessary waste
of memory, it I ds on to some interesting
variations that yoO can produce.

For example, you will probably have seen a
clock face with Roman numerals. By using a
string variable, and storing letters in a DATA
statement instead of numbers, you can change
your conventional clock into a more impress-
ive one.

el You will prob ly need to change the size
and/or the positio of the circle, so that it does
not obscure som of the Roman numerals (the
number 8 in Roman numeral is VIII, which
takes up quite a lot of space!).

You can also try to make a 2 hour Roman
numeral clock. It is surprising h w simple it is

mi to change fro a 12 hour to a 	hour clock
using this me od.

Along s' ar lines, try to inclu e an alarm

into your program. To do this, you will have to
work out the position that the clock hands will
be in when the set time is reached, using SIN
and COS, and add an IF ... THEN statement so
that the computer BEEPs, rings, or chimes as
soon as the variables which set the clock hands
are equal to the values you have worked out.

Using the same principles, you could make
a clock which would cover not just 12 hours or
one day, but a week, a month or even a year!
The only limit is the amount of information
that you can fit onto your screen.

A flower out of the Acorn screen A simply-programmed Spectrum spiral

10 HIRES 0.1
50 FOR N = 0 TO 10' n STEP n/10
60 PLOT 160+ (5 + ZrSIN(N),

100 + (5 + Z) `COS(N),1
70 Z=Z+1
80 NEXT N
90 GOTO 90

10 GRAPHIC 2
50 FOR N = 0T0 10'n STEP rz/50
60 POINT 1,511 + (5 +Z)*SIN(N),

511 + (5 + Z)*COS(N)
70Z=Z+1
80 NEXT N
90 GOTO 90

10 MODE1
50 FOR T = 0T0 10' PI STEP.1
60 PLOT69,SIN(T)*T*15 + 680,

COS(T)*T*15 + 512
70 NEXT

10 PMODE 4,1
20 PCLS
30 SCREEN 1,1
40 PI =4*ATN(1)
50 FOR N = 0 TO 10' PI STEP PI/10
60 PSET(127 + (5 + Z)*SIN(N),

DRAWING PATTERNS
The uses you have seen so far for SIN and COS
have been quite functional: a clock, a compass,
and a graph. But perhaps the most interesting
use of them, is the rather more abstract
graphics displays that they can be manipulated
to achieve.

Just by DRAWing a series of circles and
ellipses some very impressive pictures can be
DRAWn. But think what would happen if you
made a few changes: you could move the
centre of the circle, or make it grow each time it
goes round, for example. You can achieve
ckanges like this very easily on your computer
by just adding extra program lines to the
routines yOu already know.

DRAWING A SPIRAL
Part one of this series of articles gave you a
routine for PLOTting pixels to mark the shape
of a circle You can change this a bit and get a
spiral inst*d of a circle. Here are versions of
the adapted routine which will draw a spiral
pattern for you:

a
10 LET z = 0
50 FOR n = 0 TO 8*PI STEP PI/10
60 PLOT 128 + (5 + z) * SI N n,88+

(5 + z)*COS n
70 LET z = z + 1
80 NEXT n

95+ (5 + Z)*COS(N),5)
70 Z = Z + 1
80 NEXT N
90 GOTO 90

et The only difference between 's program a d
the version that draws a circl is the variable .
(The Acorn uses a different ethod.)

This variable starts at 0 and is increase
every time that the comp ter goes through
the loop. is effect on th program is in the

\

,I.
calculation that take place in Line 60.

The PL ted point is controlled, as in the
simple circle, by theSIN and COS of the
control variable in the ?bop. These have to be
multiplied by a number so that they are large
enough to be noticed on the screen.

So, by making the number by which you
multiply the SIN and COS larger each time the
computer goes through the loop, you make the
position of each ixel et PLOTted further away
from the cen e tha before. The variable
which contr s this is . This results in the
spiral growing out grad ly from the centre.

07t As wi*the circle vers n of this routine
you can get different resultsny changing t
STEP 244 Line 50) or by changing the am nt
that is incremented each time. Some interes-
ting STEPS are: 2,5,PI and 2*PI. Try and work
out why the results are different (remember
that the computers all workivdians, and that
there are 2 times PI radians in a circle).

You can also produce 'spiral ellipses' in the
same way that you produced normal ellipses
with the first version of this program: by
changing the number inside the brackets in
Line 60 (outside brackets on the Acorns).

MORE ELABORATE PATTERNS
There is a child's toy which involves drawing
pretty patterns by using a set of plastic
`wheels'. The child places a small wheel inside
a large wheel, and puts a ball point pen
through a hole in the small wheel; by moving
the small wheel around inside the large one,
the pen is moved and draws the patterns on
paper.

The centre of the small circle is moving all
the time as the child draws so that the line
forms a continuous chain of spirals. So the
computer can produce similar effects by
PLOTting circles whose centre is continuously
moving.

The programs below do just this: they PLOT
a series of points of a circle, whose centre is
continuously moving. And on all the com-
puters, except for the Dragon/Tandy version,
the colour is chosen randomly.

Once the program has been RUN it will
continue indefinitely. To change the pattern
all you need do is press any key (or press
ESCAPE if you have an Acorn computer) and
the computer will start again.

1 0 CLS : LET x = 0: LET p = 0:
LET q = 0

20 LET z= INT (RND*7): INK z:
LET a = INT (RND*50)

30 LET b= INT (RND*50)
40 FOR n = 0 TO 200*PI STEP b/100
50 IF 1NKEY$ < >'"' THEN

GOTO 10
60 LET p = 128 + (a — b)*SIN n:

LET q = 88 + (a — b)*COS n
70 PLOT p + b*SIN x,q + b*COS x
80 LET x = x — a/1074
90 NEXT n
110 GOTO 20

10 HIRES 0,1
20 A= RND(1)*55:A2= RND(1)*45
30 FOR N = 0 TO 200*n

STEP A2/90
40 P=160 + (A— A2)*SIN(N):Q=100

+ (A — A2)*COS(N)
45 PP =160 + (A — A2)*SIN(N — (A2/

90)):QQ = 100 + (A — A2) -*COSi.
(N — (A2/90))

50 LINE PP + A2*SIN(XX), QQ+
A2* COS(XX),P + A2*SIN(X),
Q + ArCOS(X),1

60 XX=X:X=X—A/190
70 IF PEEK(197) < > 64 THEN RUN
80 NEXT N
90 PAUSE 5:RUN

10 GRAPHIC 2:SCNCLR
20 A= RND(1)*250:A2 = RND(1)*250
30 FOR N = 0 TO 200*n STEP A2/90
40 P= 511 + (A— A2)*SIN(N):Q= 511

+ (A — A2)*COS(N)
45 PP= 511 + (A — A2)*SIN(N — (A2/

90)):QQ = 511 + (A — A2)*COS
(N — (A2/90))

50 DRAW2,PP + A2*SIN(XX),QQ +
A2*COS(XX) TO P + A2*SIN
(X),Q + A2*COS(X)

60 XX=X:X=X—A/190
70 IF PEEK(197)< >64 THEN RUN
80 NEXT N
90 FOR Z=1 TO 2000:NEXT Z:RUN

10 ON ERROR GOTO 20
20 MODE1:VDU19,2,2,0,0,0,19,3,

4,0,0,0
30 X = 0:GCOLO,RND(3)
40 A= RND(500):A2 = RND(500)
50 MOVE 680,512 + A
60 FOR N = 0 TO 200* PI STEP A2/500
70 P= 680 + (A — A2)*SIN (N):Q = 512

+ (A — A2)*COS(N)
80 DRAW P + ArSIN(X),Q+

COS(X)
90 X = X — A/1074
100 NEXT
110 GOTO 20

10 PMODE 4,1:PCLS:SCREEN 1,1
20 PI = 4*ATN (1)
30 A= RND(50) —1:B = RND(50) 1
40 FOR N = 0 TO 200* PI STEP

B/100
50 IF 1NKEY$ < >"" THEN 10
60 P=128+ (A— B)*SIN(N):Q=

95 + (A — B)*COS(N)
70 PSET (P+ B*SIN(X),Q + B*

COS(X),5)
80 X = X — A/1074
90 NEXT
100 GOTO 30

You can see that the FOR ... NEXT loor
introduces a circle drawing routine straight
away: the loops for each computer are

FOR N = 0 TO 200 * PI

As with the other program which uses SIN anc
COS in this article, both functions are include(
inside the loop. They calculate the position o :

the next pixel to be PLOTted (or, in the case of
the Acorn and Commodore computers,
DRAWn). Although of course, the calculations
are rather more complicated than a simple 'SIN
N' or 'COS N'.

The rest of the calculations in this Line are
to increase the result of the SIN or COS sum so
that it represents a screen position. This is why
the centre of each computer's high resolution
screen features in the calculations. You should
be able to see the 'y' coordinate of the centre of
the screen in one half of the program Line (the
one which also includes COS), and the 'x'
coordinate in the other half.

The other factors in the calculations are two
variables. These are given random values at
the beginning of each program. It is these
random factors which enable the computer to
display a different pattern almost every time it
RUNS. Try changing the value of these random
variables and see what difference it makes.

You can also change the program in another
way: change the STEP of the FOR ... NEXT loop.
This should make the density of the dots either
higher or lower on the Spectrum, Dragon and
Tandy, depending on whether you increase or
decrease the STEP.

In order to generate the pattern, the centre
of the circle is changed after every pixel has
been PLOTted. This is done by putting the
centre of the circle itself on the circumference
of another circle which moves round with each
step through the loop. This is the function of
the second set of SIN and COS calculations,
based on x. This variable is reduced very
slightly each time that the computer goes
through the loop.

Try reducing the variable (x) by a different
amount to get another variation on the pattern.
These six values give very interesting results:
A/10, A/ —10, A/ — 50, A/0.5, A/0.1, A/0.001.

Each of the computers' versions allow you
to press a key while the program is RUNning to
start the program again. The Spectrum,
Dragon and Tandy use INKEY$ to check for a
key-press, while the Commodore PEEKS into its
memory to find out the same thing.

On the Acorn computers, you can use the
ESCAPE' key. This is where the Acorn com-
mand 'ON ERROR GOTO ...' becomes very
useful. If you press the ESCAPE' key the
computer records it as an error, and so goes to
the Line dictated by the command.

Future articles will cover more uses for the
trigonometrical and angular functions, but the
next part of the series on maths functions is all
about the squares, cubes, square roots and
other powers that you can use to control how a
variable grows. Once again, these have uses
that at first sight would seem to have very little
to do with mathematics.

• HOW TO WRITE ASSEMBLY
LANGUAGE

■ WHAT ADDRESSING IS
■ HOW THE CODES CONVERT
■ WHAT MNEMONICS ARE

Warning: Trying to write machine
code programs in hex could damage
your brain. But you can do it easily
in assembly language and then
translate into hexadecimal

Machine code programs are fast, efficient and
very effective, but they are extremely difficult
to write and debug. Even to the experienced
eye they can appear to be a meaningless string
of numbers, because instructions, data and
addresses all appear as strings of hex digits
joined end to end.

The solution is not to write programs in
machine code at all. Instead, most machine
code programs are written in assembly lan-
guage, then translated into machine code.
Usually this is done by another program called
an assembler. But if you don't have an as-
sembler you can do the translation by hand
and key in the resulting machine code using
your machine code monitor.

ASSEMBLY LANGUAGE
Of course, this means that you have to learn
assembly language, but that is nowhere near as
difficult as learning machine code. The
mnemonics (pronounced `nimonics')
which represent the machine's
opcodes are practically self-
explanatory. Data and ad-
dresses are figures,
just as they are
in machine
code.

But with the opcodes in mnemonics, the
machine code's solid string of numbers is
broken up and you can see what is going on.

When you hand assemble, all you have to do
is look up the mnemonics in the appropriate
table in the guide to the microprocessor chip in
your computer. The Spectrum uses the Z80,
the Dragon and Tandy use the 6809 and the
Commodore the 6510 (which is almost ident-
ical to Acorn's 6502). The result in the table
gives you the numerical opcode. Slot that into
place and the translation is practically done.

There is only one other thing to remember.
On the Sinclairs and the Commodores, you
must remember to switch round the bytes of
any two-byte address or piece of data. This is
because these machines store numbers in the
low-byte/high-byte format (see page 237). The
Dragon and Tandy use a high-byte/low-byte
format, so you can leave the pairs of digits in
two-byte addresses or pieces of data in their
normal order.

THE MNEMONICS
On page 67 you saw
that LD meant

I
NO' 	-

LoaD and J
meant Jump. Here

are a few more examples of
the assembly language mnemonics

for the various microprocessors
used by these machines:

a
add—add; call—call a subroutine; inc b—
increment (add 1 to) register B; res—reset a
bit to zero; jrnz—jump relative if non-zero;
set—set a bit to one.

ADC—add with carry; DEX—decrement (sub-
tract 1 from) register X; JSR—jump to subrout-
ine; TAX—transfer data from accumulator to
index register X; CM P—compare; BEQ-
branch if equal to zero.

ADD—add; JSR—jump to subroutine; INCB-
increment accumulator B; BNE—branch if not
equal to zero; CLRA—clear contents of ac-
cumulator A, that is set A to zero; TFR X,Y-
transfer contents of register X to register
Y; SEX—extend accumulator B into
accumulator A.

As you can see, these
mnemonics—like
the hexa-

decimal
machine code

they represent—
either manipulate the

contents of a register, set
a flag—which itself is mani-

pulating the flag, process or status
register—or jump (or branch) back and

forth in the program itself. These are the
only things that machine code instructions

can do.
Although the meaning of these mnemonics

is often transparent do not expect to under-
stand how various instructions apply to differ-
ent registers—any more than you would expect
to understand hexadecimal machine code in-
structions at first glance. Later chapters will
explain how each instruction works. But first
you have to learn how to translate assembly
language mnemonics into machine code hex so
that you can convert assembly language
listings in INPUT and other publications
into machine code and feed them into your
computer using your machine code monitor.

ADDRESSING
Translating assembly language into machine
code isn't quite that easy, though. If you look
at the instruction set table in a guide to your
chip, you will find that a simple instruction like
LDA—which means LoaD the A register or
accumulator—can be translated into between
five and 15 different opcodes, depending on
which machine you have. You have to decide
on which one of these opcodes to use.

The different opcodes depend on which
type of addressing is being used. The type of
addressing means the various ways inform-
ation is accessed by the microprocessor.

In this article we shall look at the theory of
how this is done on your computer. In part two
of this article on hand assembly, you will have
a chance to hand assemble a couple of useful
assembly language routines yourself, and learn
how they work.

a a
The simplest type of addressing with the Z80
chip is immediate addressing. Here a number
follows the assembly mnemonic. For example:

Id a,4

This means load the A register with the
number 4 and translates to 3E 04 in machine
code. 3E is the code for Id a and the data, 04,
remains the same.

In direct addressing, an address where the
data can be found is given instead of the data
itself. For example:

Id a,(0E2D)

means load the contents of memory location
0E2D into the A register. This translates into
3A 2D OE. (Note that the two bytes of the
address have been switched round.)

Direct addressing also works the other way
round:

Id (0E2D), a

means load the contents of the A register into
memory location 0E2D and it translates into 32
2D OE. (Again the two bytes are swapped.)

When indirect addressing is used, the ma-
chine is told where to find the address of the
data needed. For example, the instruction:

Id a,(hl)

means load the A register with the data
contained in the address in the HL register. In
other words, the microprocessor looks in the
HL register for the address of the data which it
loads into the accumulator.

Again, this works the other way round.

Id(h1),a

means load the contents of the A register into
the memory location whose address is in the HL
register.

There is a special type of indirect address-
ing which is called indexed addressing. Here
one of the two index registers—IX and IV—and
the actual address to be used in the operation,
is given by an offset (see page 238) which is
added to the contents of the IX or IV register.

A typical instruction would be:

Id a,(ix+ 2F)

Note that the offset is only one byte.
Data can also be transferred from one

register to another. This is called register-to-
register addressing and its instructions look like
this:

Id d,b

which means load the contents of the B
register into the D register.

Relative addressing is only used with jump
commands which are the equivalent of GOTOs
in BASIC. It tells the computer how many
bytes to jump forwards or backwards. For
example:

jrnz OFC

The mnemonic jrnz means jump relative if
non zero—that is if the zero flag in the flag
register is not set (see page 238). The FC after
it tells it where to jump to. (The 0 in front of it is
to differentiate the hex number FC from any
label FC.) FC is — 4 in two's complement hex.

So if the zero flag is not set, the microprocessor
jumps back four bytes in the program.

But the four bytes are counted from the end
of the jrnz OFC instruction, which is itself a
two-byte instruction—it translates into 20 FC
in machine code. So the microprocessor jumps
back to the instruction which appeared two
bytes before this one.

In fact, relative addressing is rarely used in
assembly language. Jumps are usually in-
dicated by labels. These are words that are
used as markers—like loop'—which mark
the beginning and end of jumps.

The marker appears in front of the instruc-
tion to be jumped to and after the jump
instruction. So in an assembly language
program you will get a line like:

loop Id a,07

and later, say:

djnz loop

The djnz means decrement the B register by 1
and jump to where the 'loop' label appears in
front of an instruction if the zero flag is not set.
But when you translate into machine code you
must work out the relative jumps yourself.

The simplest form of addressing on the 6510
and the 6502 is implied addressing. In fact, this
is not addressing at all. For example:

CLC

means CLear Carry flag and does not need any
sort of address afterwards. The action is
carried out on the carry flag whose address is
implied in the instruction.

In immediate addressing, the data follows the
instruction directly. For example:

LDA # &04

This Loa Ds the Accumulator with the number
4. Look up LDA in the manual for your chip
and you will find it translates to A9 when the
immediate addressing mode is used. So the
whole instruction translates into A9 04.

Absolute addressing is where the whole
address of a memory location follows the
mnemonic instruction. For example:

LDA &1122

Where do I look up the hex
opcodes corresponding to the
assembly language mnemonics?

1st- a

The complete set of machine code
instructions is given in Appendix A of
your manual under the heading The
character set'. This listing is somewhat
confusing though. And it is difficult to
use as the instructions are listed in hex
order. You would be better off using one
of the programming guides to the Z80
chip or, better still, one dealing with ma-
chine code programming specifically on
your machine. Check that the book does
contain a full list of the opcodes though.
Some of them don't.

fgl
The Dragon Programmer's Reference
Guide and other books on machine code
programming on the Dragon and Tandy
contain listings of the opcodes. But if you
are seriously interested in machine code
programming it is probably better to buy
one of the programming guides to the
6809 chip.

11

The Programmer's Reference Guide lists
all the opcodes and their assembly
language equivalents. But if you are
going into machine code programming
seriously it is probably worth buying
a comprehensive guide to
machine code programming
on the 6502 or 6510 chips.

means Loa D the A register with the data stored
in memory location 1122. This is sometimes
known as direct addressing on the Acorn
machines' 6502 chip.

If you look up. LDA under absolute address-
ing, you will find the opcode AD. And the
whole instruction translates into AD 22 11.
Note here that the two bytes of the address are
swapped around when you translate from
assembly language.

On the zero page—that is from fA 40 to
00FF—you don't have to specify the first byte
of the address, but you have to use a special
zero page opcode (called a short address
opcode) which tells the computer to look for an
address of one byte.

The opcode for LDA in the zero page
addressing mode is A5, so an instruction like:

LDA &7F

will translate to A5 7F.
With both absolute and zero page ad-

dresses, it is possible to use indexed addressing.
Here the contents of one of the index
registers—X and Y—are added to the address
given with the instruction to give a second
address which is to be used. For example:

LDA &1122,X

Say the contents of X register is 33. The 33 is
added to 1122, to give 1155, and the ac-
cumulator is loaded with the data found in
memory location 1155.

Both the X and Y registers can be used to
index both absolute addresses and zero page
addresses.

(However you should note that if the sum of
the contents of the X register and the zero page
address are greater than FF in hex and would
therefore fall on page one, the most significant
byte is ignored. In zero page addressing,
indexed or otherwise, the address used is
always on the zero page.)

With indexed addressing you must look up
the assembly code mnemonic under 'zero
page, X', 'zero page, Y', 'absolute, X' or
`absolute, Y'.

It is also possible to address a piece of data
indirectly using indirect addressing. This means
you give the microprocessor an address—in
brackets—where it will find a second address
and it is this second address which is used. For
example:

JMP (&1530)

means JuMP to the address given at memory
location 1530. But as any one memory location
can hold only one byte and you need two bytes
to make up an address, it looks at 1530 and
1531. The first location holds the least signifi-
cant byte of the address and the second holds
the most significant byte, in accordance with
the convention used by these particular micro-
processors. So if memory location 1530 holds
2F and location 1531 holds 13, this means that
the microprocessor will jump to memory
location 132F.

Indirect addresses can also be indexed in
two ways. With the X register you can add an
offset to the first address—that is the one given
in the instruction. This is called pre-indexed
indirect addressing. Or you can add an offset
from the Y register to the second address—that
is the one in the memory locations given in the
original instruction. This is called post-indexed
indirect addressing.

In assembly language the two instructions
look like this:

LDA (&1122,X) and
LDA (&1122),Y

The first is pre-indexed, the second post-
indexed and you have to look up the opcode for
LDA under (indirect, X) and (indirect), Y. This
gives Al and B1 respectively. So these two
instructions translate into Al 22 11 and B1 22
11.

Branch instructions are conditional jumps.
For example:

B EQ

means Branch if EQual—that is, if the zero flag
is set to 1. Branch instructions can use relative
addressing on some assemblers.

BEQ # &04

means jump forward four bytes from the start
of the next instruction if the zero flag is set.
And

BEQ # &FA

means jump backwards six bytes if the zero
flag is set. This is counted backwards from the
beginning of the next instruction so two bytes
are already taken up by the BEQ instruction.
FA is —6 in 2s complement (see page 181).

In assembly language, labels are mainly
used instead of numbers. These are single
word markers which show the microprocessor
where to jump to. One instruction will have the
label in front of it like this:

label LDA &04

and a branch will have

BEQ label

The assembler will then work out the relative
jump. But if you are hand assembling you will
have to work out the jump yourself. Machine
code does not recognize labels, only numbers.

The 6510 and the 6502 chips have one more
type of addressing called accumulator address-
ing. This is used with shift and rotation
instructions. For example:

ASL A

means Shift the Accumulator Left one bit. You
can also apply this instruction to any memory
location—not only the accumulator. In this
case you would replace the last A with the
address of the memory location you wanted
shifted. The memory location can be indexed
with the X register only, and it will make the
least significant bit of that byte 0 push the
most significant bit into the carry flag and shift
all the other bits along one place to the left.

tgl !HI
Manuals on the 6809 chip used in the Dragon
and Tandy draw attention to inherent address-
ing which is also sometimes is known as implied
or register addressing. This simply refers to
assembly language instructions which don't
need to be followed by an address as they
operate on a register which is specified in the
instruction itself. For example:

D ECA

which means DECrement the A register by 1. •
Look this up under inherent addressing and
you find the code 4A.

In immediate addressing, the data follows the
instruction directly. For example:

ADDB # $7

which means ADD 7 to the B register. The code
for ADDB in immediate mode is CB so the
whole thing translates to CB 07.

On the Dragon and Tandy there is another
form of immediate addressing using a second
byte—known as a postbyte. In this case, in-
structions take the form:

TFR A,B

which means transfer the contents of register A
into register B.

To translate this instruction into machine
code, you look up TFR under immediate
addressing (although in some of the manuals it
is put, mistakenly, under inherent addressing).
This gives 1 F. Then the postbyte is evaluated a
nibble at a time.

In the manuals for the 6809 chip you will
find single-digit values assigned to each of the
registers. Two of these are put together to
make up the postbyte.

For example, the A register is assigned a
value of 8 and the B register a value of 9. So

TFR A,B

translates to 1 F 89. If the instruction had been

TFR B,A

the corresponding machine code instruction
would be 1F 98.

In extended or absolute addressing, the full
16-bit address of the memory location where
the data required is stored appears after the
instruction. For example:

STA $7530

which means STore the contents of the Ac-

cumulator in memory location &H7530. This
translates into B7 75 30. (Note that the two
bytes of the address are not reversed when
writing machine code as they are on most other
home computers.)

This is a little cumbersome since the
translation—B7 75 30—is a three-byte instruc-
tion. Using direct addressing this could be cut
to a two-byte instruction.

The 6809 chip has a direct page register (see
page 239) which stores the most significant
byte of an address. So all the memory locations
on that page can be addressed using only one
byte, the least significant. It works like this.

The direct page register is loaded by using
the TFR instruction mentioned above or by the
EXG or exchange command which exchanges
the contents of any two registers.

EXG A, DP

means EXchanGe the contents of the A register
and the Direct Page register. It not only sets the
direct page with whatever you have previously
loaded into the A register with the LDA
command, it also saves the former direct page
number by putting the contents of the DP
register into the A register. From there it can
be stored in a specific memory location by
using the STA command.

The most significant byte of the direct
page-75, in this example—is now set and the
least significant can be given with the instruc-
tion. In this case, you have to look up the STA
instruction under the direct addressing
column, which gives 97. So the full instruction
is 9730.

Obviously, it is not worth going through
this whole procedure each time data is stored
in a memory location. Setting the direct page

takes much more time than is saved by cutting
the three-byte instruction down to a two-byte
instruction. But it is often worthwhile setting
the direct page at the beginning of the program
and saving all the data on the same page.

Indirect addressing takes place when the
microprocessor is told to look at one address or
register to find a second address where data is
to be found or stored. On the Dragon and
Tandy the first address or register should be in
square brackets. For example,

LDA [$FFFE]

tells the microprocessor to look in FFFE and the
next memory location, FFFF. The two bytes in
these memory locations are taken as the ad-
dress of a second memory location. And it is
from this second memory location that the data
is taken and loaded into the A register.

Indirect addressing can also be performed
via the U, S, X and Y registers and the program
counter.

In all these cases of indirect addressing the
instruction mnemonic has to be looked up
under the indexed addressing column to give
the opcode. You then have to look up a postbyte
code.

The postbytes used in indirect addressing
appear in a separate table in the manual for the
6809 chip.

In the example given above you look up
LDA under indexed addressing and get A6.
Then you look up [mmnn]—which indicates a
general 16-bit indirect address—in the post-
byte table. This gives you 9F (or BF or DF or FF
as the postbytes are repeated for each register,
but [mmnn] is independent of any register so it
appears four times).

So the whole instruction

LDA [$FFFE]

translates into A6 9F FF FE.
Using the U, S, X and Y registers and the

program counter, both non-indirect addresses
(without square brackets) and indirect ad-
dresses (with square brackets) can be given
using offsets (see page 239). Offsets can be
constants—decimal, eight or 16-bit hex—or
the contents of other registers. These are
added to, or subtracted from the contents of
these five indexable addresses. For example:

LDA 0,X

means LoaD the A register with the data in the
memory location whose address is given by the
contents of the X register. The offset is zero.

LDA 1,X

means LoaD the A register with the data in the
memory location whose address is given by the
contents of the X register plus 1.

LDA —16,Y

means LoaD the A register with the data in the
memory location whose address is given by the
contents of the Y register minus 16.

LDA [$10,X]

is the indirect addressing version. It LoaDs the
A register with the contents of the memory
location whose address is given by the X
register plus 10 in hex.

In all these cases the opcode for LDA is
under the indexed heading and the appropriate
postbyte must be added from the postbyte
table. 16-bit addresses and eight-bit hex offsets
then follow that.

Jumps in assembly language—which are the

equivalent of GOTOs and GOSU Bs in BASIC—
are handled by the commands JMP and J SR.
These can have direct page, extended or
indexed end addresses and their machine
codes alter accordingly. Branches—that is,
conditional jumps—use relative addressing,
though.

With relative addressing you tell the micro-
processor how many bytes to jump forward or
backwards. There are two main types of
branches—an ordinary eight-bit branch which
jumps up to 127 bytes forward or 128 bytes
backwards and a long 16-bit branch which
jumps up to 32,767 bytes forward or 32,768
bytes backwards. For example:

B EQ $ FA

will jump six bytes backwards from the start of
the next instruction—all relative jumps are
counted from the start of the next
instruction—if the zero flag is set. FA is — 6
in 2's complement (see page 239). Alterna-
tively, the long branch:

LBEQ $0A00

jumps 2560 bytes forward if the zero flag is set.
Branches always use relative addressing—

no other type of addressing is available to
them. But it is often laborious to work out how
big a branch is, and labels can be used.

A label is a word which is used to mark the
place a branch goes to. For example, you will
have a line like:

LABEL DECA

then later, say:

BEQ LABEL

An assembler would then work out the jump
back—or forward if the prefixed LABEL occurs
after the branch—to the other mention of
LABEL and fill in the number of bytes the
program has to jump.

But when you hand assemble you will have
to work out these jumps for yourself. You do
this by counting the number of bytes from the
end of the branch command—that is after the
byte that will contain the size of the jump
itself—to the beginning of the instruction you
are branching to. Remember with a long
branch, details of the jump size will take up
two bytes.

ASSEMBLING BY HAND
Once you've grasped the principles of address-
ing, hand assembly is easy. All you have to do
is look up the opcode for the assembly
mnemonics under the right addressing mode,
work out any relative jumps and—on the
Spectrum or the Commodore—switch the
bytes of any two byte address or piece of data.

The ASCII code employed by
computers has enough similarities to
enable computers literally to 'talk' to
each other. This 'common language'
has other uses too ...

Every key and combination of keys on your
computer is represented by a unique electronic
code pattern within the computer. In BASIC,
these patterns are represented by a series of
decimal values ranging from 0 to 255. The
letter A, for example, has the decimal value 65,
B is 66 and so on. And when you type in any
letters or words it is these codes that the
computer stores.

The values and corresponding pattern of
the keys are not the same on every computer,
but mercifully there is at least some standar-
dization in the way that they are used and
described.

The range of values are referred to by the
initials ASCII (which stands for American
Standard Code for Information Interchange).
This code was devised to provide a means by
which computers could transfer data between

each other. The Acorns, Commodores,
Dragon, Tandy and Spectrum all make use of
the code—at least in part. The ZX81 has a
completely different code—unique to this
machine.

ASCII CODE
The full ASCII character set is by no means
the same on all computers. But there are
similarities. The greatest consistency is in the
range 33 to 90 which covers normal symbols,
puntuation, numerals and the upper case
alphabet (capitals). There is an easy way to
find out the ASCII code of a character, just
type PRINT ASC("X")—or PRINT CODE "X"
on the Spectrum—and you'll be shown the
ASCII code of "X" or any other character
you're interested in. The next program lets
you enter the characters more easily.

El MI !HI
1 0 PRINT "TYPE ANY LETTER, NUMBER OR

CHARACTER"
20 INPUT A$
30 PRINT "THE ASCII CODE FOR ❑ ";

A$;" ❑ IS ❑ ";ASC(AS)
40 GOTO 20

On the Spectrum change Line 30 to:

30 PRINT "THE ASCII CODE FOR ❑ ";
A$;" ❑ IS ❑ ";CODE A$

The reverse of ASC or CODE is CH R$, as this
converts the code number into its correspond-
ing character. The following program converts
all the ASCII codes between 33 and 90 into
characters:

■ WHAT IS THE ASCII CODE?
■ USING NUMBERS INSTEAD OF

CHARACTERS
■ A PROGRAM TO PRINT OUT

CODED MESSAGES

■ THE VALUE OF THE ASCII
CODE IN STRING COMPARISONS

■ CHECKING INPUT VALUES
■ SPECIAL CODE VALUES FOR

YOUR COMPUTER

aWWEINCIIHI
10 PRINT "ASCII CODE","CHARACTER"
20 FOR N =33 TO 90
30 PRINT N,CHR$ (N)
40 FOR D=1 TO 500: NEXT D
50 NEXT N

The lower case alphabet on all but the Com-
modore and Vic covers the range from 97 to
122, and this can be checked by changing the
last figure in Line 20 to 122. The whole set of
characters can be displayed by changing it to
255 instead. The full listing of the whole
character set is in your manual.

On the Commodore 64 you have to toggle
the screen display backwards and forwards
between upper case/graphics and upper case/
lower case modes by simultaneously press-

ing the RE and 'SHIFT' keys again and again.
This is because the lower case letters and the
graphics characters share the same ASCII
codes and which you actually see depends on
which mode you are in.

USING THE ASCII CODE
The advantage of using a number instead of a
character is that you can alter the number in
various mathematical ways. Then, if you print
out the CHR$ of the new number you'll get a
different letter. This is the basis for many
code-writing programs. It's a useful facility,
because you cannot directly manipulate a letter
by applying a mathematical operation.

Simple codes just add on a constant amount
to each number, so in effect the letter is shifted
down the alphabet. For example, A becomes
G, B becomes H and so on. But these codes are

very easy to crack—after all, it wouldn't take
long to program a computer to try out each of
the 26 combinations, and it would be easy to
see at a glance which was the right one.

To be successful, the program has to do
more complicated things with the numbers,
and the program below makes use of a code
word so each letter of the message is altered in
different ways. This type of code is very
difficult to crack—unless you know the code
word that is.

a
10 POKE 23658,8: LET CP=0: LET PM =0:

LET D$=""
20 CLS
30 INPUT "WHAT IS THE CODEWORD ?El";

LINE C$
40 PRINT "INPUT THE MESSAGE:—"

50 INPUT LINE M$
60 LET CP= CP+1: IF CP> LEN C$ THEN

LET CP=1
70 LET PM= PM +1
80 IF PM > LEN M$ THEN GOTO 200
90 LET F$ = M$(PM)
100 IF F$<"A" OR F$ > "Z" THEN GOTO

150
110 LET F=CODE F$ + CODE C$(CP) —65
120 IF F> 90 THEN LET F= F-26
130 LET D$ = D$+ CHR$ F
140 GOTO 60
150 IF F$ <"0" OR F$ > "9" THEN LET

D$ = D$ + F$:GOTO 70
160 LET F=CODE F$+ CODE C$(CP) —48
170 IF F>57 THEN LET F= F-10: GOTO

170
180 LET D$= D$ + CHR$ F
190 GOTO 60
200 PRINT "THE CODED MESSAGE IS :—"
210 PRINT 'D$
220 STOP

10 PRINT "0"
30 INPUT "WHAT IS THE CODEWORD";C$
40 PRINT "INPUT THE MESSAGE :—"
50 INPUT MS$
60 CP=CP+1:IF CP> LEN(C$) THEN CP=1
70 PM= PM +1
80 IF PM > LEN(MS$) THEN 200
90 F$= M1D$(MS$,PM,1)
100 IF F$ <"A" OR FS> "Z" THEN 150
110 F=ASC(F$)+ASC(MID$

(C$,CP,1)) — 65
120 IF F>90 THEN F= F-26
130 CD$=CD$+CHR$(F)
140 GOTO 60
150 IF F$ <"0" OR F$> "9" THEN

CD$ = CD$ + F$:GOTO 70
160 F=ASC(F$)+ASC(M1D$

(C$,CP,1)) —48
170 IF F>57 THEN F= F-10: GOTO 170
180 CD$=CD$+CHR$(F)
190 GOTO 60
200 PRINT:PRINT "THE CODED MESSAGE IS

210 PRINT:PRINT CD$
220 END

LI
10 MODE1
30 INPUTLINE"WHAT IS THE

CODEWORD111",C$
40 PRINT"INPUT THE MESSAGE"
50 INPUTLINE MS$
60 CP=CP+1:IF CP> LEN(C$) THEN CP=1
70 PM= PM +1
80 IF PM> LEN(MS$) THEN 200
90 F$= M1D$(MS$,PM,1)
100 IF F$ <"A" OR F$ >"Z" THEN 150

110 F=ASC(F$)+ASC(MIDS(CS,
CP,1))-65

120 IF F> 90 THEN F = F-26
130 CD$=CD$+CHR$(F)
140 GOTO 60
150 IF F$<"0" OR F$ >"9" THEN

CD$=CD$+ F$:GOTO 70
160 F=ASC(F$)+ASC(MIDS(C$,

CP,1)) —48
170 IF F>57 THEN F= F-10:

GOTO 170
180 CD$=CD$+CHR$(F)
190 GOTO 60
200 PRINT"`THE CODED MESSAGE IS"
210 PRINT'CD$
220 END

!HI
10 CLEAR 300
20 CLS
30 LINEINPUT"WHATTS THE CODEWORD

?";C$
40 PRINT"INPUT THE MESSAGE :—"
50 LINEINPUT MS$
60 CP=CP+1:IF CP> LEN(C$) THEN CP=1
70 PM = PM +1
80 IF PM > LEN(MS$) THEN 200
90 F$ = M1D$(MS$,PM,1)
100 IF F$ <"A" OR F$>"Z" THEN 150
110 F=ASC(F$)+ASC(MIDS(C$,

CP,1)) —65
120 IF F>90 THEN F=F-26
130 CD$=CD$+CHR$(F)
140 GOTO 60
150 IF F$ <"0" OR F$ > "9" THEN

CD$= CD$ + F$:GOTO 70
160 F=ASC(F$)+ASC(MIDS(C$,

CP,1)) —48
170 IF F>57 THEN F= F-10: GOTO 170
180 CD$=CD$+CHR$(F)
190 GOTO 60
200 PRINT:PRINT"THE CODED

MESSAGE IS :"
210 PRINT:PRINTCD$
220 END

The program asks you to INPUT the codeword
and the message, then it prints out the coded
version. The message is now safe and can only
be decoded by someone who also knows the
codeword.

The way it works is quite simple and the
method is much the same as a simple coding
program, but instead of adding a constant
amount to each letter, the ASCII code of the
first letter of the codeword is added to the first
letter of the message, the second letter of the
codeword is added to the second letter of the
message, and so on. When the end of the
codeword is reached, the cycle starts at its
beginning again.

If when the numbers are added on the result
is greater than 90—that is beyond Z—then 26
is subtracted to keep the range within the
alphabet. Numbers are treated separately, in
Lines 150 to 180, to keep their ASCII codes
between 48 and 57 which corresponds to the
numbers 0 to 9.

The decoding program is very similar to the
first one, all that's different is that a few + s
and — s have been changed. The Line num-
bers follow on from the last one so you can save
the combined program, and there are a few
extra Lines to let you choose whether you want
to code or decode a message:

a
12 INPUT "(C)ODE OR (D)ECODE ?";

LINE A$
14 IF A$="D" THEN GOTO 400
16 IF A$< >"C" THEN GOTO 12
400 CLS
410 INPUT "WHAT IS THE CODEWORD ? ❑ ";

LINE C$
420 PRINT "INPUT THE CODED MESSAGE:—"
430 INPUT LINE M$
440 LET CP= CP +1: IF CP> LEN C$ THEN

LET CP=1
450 LET PM = PM +1
460 IF PM > LEN M$ THEN GOTO 580
470 LET FS= M$(PM)
480 IF F$ <"A" OR F$ > "Z" THEN GOTO

530
490 LET F=CODE F$—CODE C$(CP) + 65
500 IF F<65 THEN LET F= F+ 26
510 LET D$ = D$ + CHR$ F
520 GOTO 440
530 IF F$ <"0" OR F$ > "9" THEN LET

D$= D$+ F$: GOTO 450
540 LET F=CODE F$—CODE C$(CP)+ 48
550 IF F < 48 THEN LET F= F+10:GOT0550
560 LET D$=D$+CHR$ F
570 GOTO 440
580 PRINT 'THE DECODED MESSAGE IS:—"
590 PRINT 'D$
600 STOP

12 INPUT "(C)ODE OR (D)ECODE";A$
14 IF A$="D" THEN GOTO 400
16 IF A$ < >"C" THEN GOTO 12
400 PRINT" p "
410 INPUT "WHAT IS THE CODEWORD";C$
420 PRINT "INPUT THE CODED MESSAGE :"
430 INPUT MS$
440 CP=CP+1:IF CP> LEN(C$) THEN CP=1
450 PM= PM +1
460 IF PM > LEN(MS$) THEN 580
470 F$= M1D$(MS$,PM,1)
480 IF F$ <"A" OR F$ > "Z" THEN 530
490 F = ASC(F$) — ASC(MID$(C$,

CP,1)) +65

500 IF F<65 THEN F=F+26
510 CD$=CD$+CHR$(F)
520 GOTO 440
530 IF F$ <"0" OR F$ >"9" THEN

CD$=CD$+ F$:GOTO 450
540 F=ASC(F$)-ASC(MIDS(CS,

CP,1)) + 48
550 IF F < 48 THEN F= F+10:GOTO 550
560 CD$=CD$+CHR$(F)
570 GOTO 440
580 PRINT "THE DECODED

MESSAGE IS :-"

590 PRINT:PRINT CD$
600 END

12 INPUT "(C)ODE OR (D)ECODE",A$
14 IF A$="D" THEN GOTO 400
16 IF A$< >"C" THEN GOTO 12
400 CLS
410 INPUTLINE"WHAT IS THE

CODEWORD ❑ ",C$
420 PRINT"INPUT THE CODED MESSAGE"
430 INPUTLINE MS$

440 CP = CP + 1:IF CP> LEN(C$) THEN
CP=1

450 PM -PM +1
460 IF PM> LEN(MS$) THEN 580
470 F$= M1D$(MS$,PM,1)
480 IF F$ <"A" OR F$ >"Z" THEN 530
490 F-ASC(F$)-ASC(MID$(CS,

CP,1)) + 65
500 IF F < 65 THEN F= F+ 26
510 CD$=CD$+CHR$(F)
520 GOTO 440
530 IF F$ <"0" OR F$ >"9" THEN

CD$ = CD$ + F$:GOTO 450
540 F=ASC(F$)—ASC(MIDS(CS,

CP,1)) + 48
550 IF F < 48 THEN F= F+10:GOTO 550
560 CD$=CD$+CHR$(F)
570 GOTO 440
580 PRINT"`THE DECODED MESSAGE IS"
590 PRINT'CD$
600 END

tgi 114
12 INPUT "(C)ODE OR (D)ECODE ?";A$
14 IF A$="D" THEN GOTO 400
16 IF A$ < > "C" THEN GOTO 12

400 CLS
410 LINEINPUT"WHAT IS THE CODEWORD

?";C$
420 PRINT"INPUT THE CODED MESSAGE :—"
430 LINEINPUT MS$
440 CP= CP +1:1F CP> LEN(C$) THEN

CP=1
450 PM PM +1
460 IF PM> LEN(MS$) THEN 580
470 F$=MID$(MS$,PM,1)
480 IF F$<"A" OR FS > "Z" THEN 530
490 F=ASC(F$)—ASC(M1D$(C$,

CP,1)) +65
500 IF F<65 THEN F=F+26
510 CD$=CD$+CHR$(F)
520 GOTO 440

530 IF F$ <"0" OR F$ >"9" THEN
CD$ = CD$ + F$:GOTO 450

540 F=ASC(F$)—ASC(M1D$(C$,
CP,1)) +48

550 IF F < 48 THEN F= F+10:GOTO 550
560 CD$=CD$+CHR$(F)
570 GOTO 440
580 PRINT"THE DECODED MESSAGE IS :—"
590 PRINT:PRINTCD$
600 END

By the way, if you really want to make the code
difficult to crack you can always code your
coded message using a second codeword!
Remember to get them in the right order when
you decode the message again.

COMPARISONS
One of the major uses of the ASCII code
values is for comparing strings (see page 202).
String comparisons are made one character at a
time from left to right until the end of one
word is reached. For example, suppose two
string constants such as "COSMOS" and
"COSMIC" have to be evaluated. The com-
puter first compares the two Cs, then the Os,
Ss and Ms. Then 0 is compared to the
corresponding character I on the other side.

What is compared is not an arbitrary set of
alphabetic values, but the ASCII value of each
character. 0 has a greater ASCII value than I
so in this comparison "COSMOS" has a
greater value than "COSMIC". Note that the
sums of the ASCII values of the letters which
make up the string are not used to determine
which has a greater value. Each letter is
compared individually. Have a look at the
article on pages 201 to 207 for more examples
of how strings are compared.

Here are some example comparisons show-
ing various possible forms of A$ and B$, along
with the ASCII values of the characters
involved. It is important to compare the

values of each character on
a pair by pair basis, the first

character of A$ with the first of B$
and so on for the length of the
shorter word.

FM/ASCII 	B$/ASCII 	Relationship

ABC 	65,66,67 ABC 	65,66,67 A$=B$
ABD 	65,66,68 ABCD 	65,66,67 A$> B$
ABD 	65,66,68 ABCD 65,66,67 A$ < >B$
ABC 	65,66,67 Abc 	65,97,98 A$<B$
COSMI 67,79,83, COSMO 67,79,83, A$<B$

77,73 	 77,79
$1 	36,49 	$1.0 	36,49,46 A$<B$

Note, in the second and third examples, it is
possible to write the relationship in more than
one way. Also that, in the last example, that all
else being equal, it's the longer string which is
considered to have the greater value or be
`more than' the other.

CHECKING INPUTS
The ASC and CODE functions work only on the
first character of the string. So PRINT
ASC("USA") or PRINT CODE"USA" (on the
Spectrum) gives 85, the ASCII code of "U".
This turns out to be very useful for checking
IN PUTS to programs. For example, in the code-
writing program, Line 12 asked you to INPUT
either C for CODE or D for DECODE. Then
the next two lines direct the program to the
right section. But to guard against someone
typing in CODE or DECODE in full you
could rewrite Lines 14 and 16 as:

liCE El NZ !HI
14 IF ASC(A$) = 68 THEN GOTO 400
16 IF ASC(A$) < > 67 THEN GOTO 12

14 IF CODE A$=68 THEN GOTO 400
16 IF CODE A$ < > 67 THEN GOTO 12

CONTROL CODES
Some ASCII codes don't have characters
associated with them. For example, when you
press the ENTER' or 'RETURN' key the computer
stores the value 13, but instead of printing a
character on the screen, the cursor is moved to
the beginning of the next line or, on the
Spectrum, the program is listed. Code 13 is
called the carriage return code or, sometimes,
the newline code. Try typing PRINT
"A";CHR$(13);"B" and you'll see that "B" is
printed on a new line directly below the "A".

Here's a way to find out the ASCII codes of
the non-character keys:

L
10 PRINT CODE INKEY$
20 GOTO 10

Icird [i3
5 GET A$: IF A$ =""THEN 5
10 PRINT ASC(A$)
20 GOTO 5

Ii
5 A$=1NKEY$: IF A$ = "" THEN 5
10 PRINT ASC(A$)
20 GOTO 10

1E1
10 PRINT ASC GET$
20 GOTO 10

Try pressing IENTERI or I RETURNI, !DELETE,
backspace or any of the other keys on your
computer. You can use this method to detect
when the keys are pressed in a game. Unfortu-
nately, except on the Acorn computers, you
cannot use the values in reverse. That is,
although cursor down has code 10, PRINT
CHR$(10) will not move the cursor down.

Some computers make more use of these
codes than others. There are a lot of spare
numbers available—from 1 to 31 and some
above 90 but they were originally defined in
the days when computers were connected to
printers so the codes are mostly concerned
with controlling these old-style printers. Now,
of course, computers are designed to be used
with a TV screen so most of the old codes no
longer apply although a few of the codes can be
used with modern printers.

The Spectrum computer has redefined a lot of
the codes so they work on the TV screen. For
example PAPER has code 17 and INK has code
16. So to PRINT the word "TITLE" on the
screen in red on a green background you can
use this program:

10 LET A$ = CHR$17 + CHR$4 + CHR$16 +
CH R$2 + "TITLE"

20 PRINT A$

If this was a heading you wanted to use several
times in a program then you just need to define
A$ once, at the start, and then use PRINT A$
each time.

lam— LI
The Commodores make extensive use of the
code values above and below the punctuation
and alphabet range. The values used up to
code 32 (space) include several of the available
colours, some cursor controls, and a forced
switch to lower case, amongst others. One of
the most commonly used values from the early
range of codes is CHR$(13) which represents
RETURN .

The remaining colours and cursor controls,
plus the ROM graphics, can be found in the
code value range which follows 90 (for Z).
Codes between 191 and 255 simply duplicate
this latter range.

The codes can be concatenated to give
variables which have embedded cursor and
colour controls. Look, for example, at the
datafile listing on page 48, Lines 42 to 60. You
can check the meaning of the various code
values using the relevant User's Guide ap-
pendix. For example, code 14 in Line 42 forces
the display into lower case when the program
is RUN. The variable names used in that
program suggest the functions performed by
the code values assigned to them. Note how a
variable such as c4$ can be formed from cd$
which is previously defined using CH R$(17).
As you can see, a very wide range of screen
manipulations can be carried out.

The Acorn computers have redefined a lot of
the codes and altered others so they work on
the TV screen. For example, code 22 selects
the screen mode, 17 defines the text colour and
31 moves the cursor to a specified position.
The advantage of using CHR$22 instead of
MODE, and CHR$17 instead of COLOUR is that
the character strings can be concatenated
together into one long string which you can
then call by a single variable name.

So, using the last three examples try out the
following program:

10 A$=CHR$22+CHR$5+CHR$17+
CHR$2 + CHR$31 + CHR$8+
CHR$15 + "TITLE"

20 PRINT A$

If this was a heading that you wanted printed
several times in a program then you just need
to define A$ once and use PRINT A$ each time.

This use of control codes, though, is un-
usual. PRINT CHR$(X); is equivalent to VDU X.
This means less typing and you can also list

several control codes together in a single VDU
statement. The last program is the same as:

10 VDU 22,5,17,2,31,8,15
20 PRINT "TITLE"

You could even put the word "TITLE" into
the VDU statement—just list the ASCII codes
of each letter:

10 VDU22,5,17,2,31,8,15,84,73,84,
76,69

However, this may be going a bit too far!
These control codes all have equivalent key-
words that do the same thing—MODE,
COLOUR and so on, but not all control codes
are like this. For example if you want to
redefine the colours you have to use VDU19,
there is no word that does the same. Similarly
VDU7 makes a short beep and VDU10 (or PRINT
CHR$10;) moves the cursor down one space.
The whole list of VDU codes is in the User
Guide.

Joysticks

K
Keypress, detection of
Keywords, spelling of

L
Languages, computer

see Assembly language;
BASIC; Machine code

LEFTS
LEN
Letter writing program
LINE, Dragon, Tandy
Logical operators
Lower case letters,

Dragon, Tandy

M
Machine code

advantages of
assembly language
binary coded decimal
binary numbers
drawing dragon with
entering machine code
games graphics
hexadecimal
low level languages
machine architecture
memory maps
monitors
negative numbers
nonary numbers
number bases
ROM and RAM
speeding up games routines

Mapping adventure games
Maze programs
/KIDS
Minefield game
Mnemonics
Movement

N
Negative binary numbers,

conversion program
Nonary numbers
NOT
Null strings
Number bases

0
Opcodes
Operators
OR

220-224

54-55
19

65

202-207
202-207
124-128

88-91
35-37,284-288

142

66
309-314

238
113-116

80-83
276-283

38-45
156-160

65-67
236-239
208-215
276-283
179-183
111-112
110-116
208-215

8-15
296-301

68-75,193-200
202-207

97-99
301

26-32,59

180-183
111

286-288
96

110-116

67
35,284-288

35-36,286-288

P
Paper for printers
Password program
PEEK
Peripherals, cassettes

joysticks
printers

Pets survey program

228
133

59,101,240-247
22-25

220-224
225-229
269-275

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Addressing
	

310-313
Adventure games

mapping
	

296-301
planning
	

264-268
Anagram program 	 203
AND
	

35-36,285-288
Animation 	 26-32
Applications

bar charts
	

257-263
family finance
	

136-143
hobbies' files
	

46-53; 75-79
letter writer
	

124-128
typing tutor
	

289-295
ASCII code
	

314-320
Assembly language
	

66-67,309-313
Assignment statement
	

66-67,92
ATM, Spectrum
	

68-69

B
Bar chart program 	 257-263
BASIC programming

arrays 	 152-155,269-275
ASCII codes 	 314-320
decision making 	 33-37
how to PLOT, DRAW,
LINE, PAINT 	 84-91
inputting information 	129-135
PEEK and POKE 	 240-247
logical operators 	 284-288
programmer's road signs 	60-64
READ and DATA 	 104-109
random numbers 	 2-7
refining your graphics 	184-192
screen displays 	 117-123
strings 	 201-207
structured programming 173-178,216-219
the FOR ... NEXT loop 	16-21
using SIN and COS 	250-256,302-308
variables 	 92-96

BEEP, Spectrum 	 230-231
Binary 	 38,41, 44,45,113-116

negative numbers 	 179-183
Bit masking 	 288
Bitwise operators
	

288
Bridge, drawing a,Spectrum

	
108

Bubble sort program
	

216-219
Byte, defmition of
	

114

C
Cassette recorders, choice of

	
24

Castle, drawing a, Dragon, Tandy
	

108
CHAS, Dragon, Tandy
	

26-27
CIRCLE
	

86-91
Circle, drawing a
	

255-256
Clock

drawing a
	

302-306
internal
	

69-73
Codeword program
	

315-318
COLOUR
	

87-90
Colour UDGs, Dragon, Tandy

	
248-249

Compass, drawing a
	

251-253
Control codes
	

319-320
Control variables
	

94
COS
	

250-256,302-308
CPU
	

236-239
Craps program
	

63
Cursor, definition of
	

7
control codes, Commodores
	

123

D
Daisywheel printers
	

227
DATA
	

104-109
Decimal

conversions from binary
	

38,42
converting fractions into binary

	
114

Decision making
	

33-37
Degrees to radians,

conversion program
	

250-251
Delays in programs
	

17
DIMensionixig an array
	

152-153
Dot matrix printers
	

226-227
DRAW
	

85-91
Drawing letters, Dragon, Tandy

	
191-192

E
Egg-timer program
	

176-177
Ellipse, drawing a
	

256
EOR, Acorn
	

287-288
ENDPROC, Acorn
	

64
Error, causes of
	

36

F
Family finance program 	136-143
Filing system program 	46-53, 75-79
Flow charts 	 173-178
Flying bird sprite, Commodore 64 168-172
FOR ... NEXT loop 	 16-21

G
Games

adventure games 	264-268,296-301
aliens and missiles 	 144-151
animation 	 26-32
arrays for games 	 155
bombing run program 	161-167
controlling movement 	 54-59
firing missiles 	 55-58
fruit machine 	 36
guessing 	 3-5
levels of difficulty 	 193-200
maze game 	 68-74,230-235
minefield 	 97-103
moving characters 	 54-59
random mazes 	 193-200
routines 	 8-15
scoring and timing 	 69-73
sound effects 	 230-235
space station game 	 144-151
visual explosions 	 161-167

GET 	 55-58,132-135
Golf-course, drawing a

Acorn, Spectrum 	 184-191
GOSUB 	 62-64
GOTO 	 18-21,60-62
Graphics

characters 	 38-45
creating and moving UDGs 	8-15
drawing on the screen 	132-133
drawing patterns 	 307-308
drawing pictures 	 107-109
explosions for games 	 161-167
fire-breathing dragon 	 80-83
frog UDG 	 10-15
instant embroidery 	 21
low-resolution 	 26-32
painting by numbers 	 19
refining your graphics 	184-192
spiral pattern 	 307
sunset pattern 	 20
tank UDG 	 10-15
using PLOT, DRAW,
CIRCLE, LINE, PAINT 	85-90
using SIN and COS 	250-256,302-308

H
Helicopter, building a

Commodore 64
	

31
Hexadecimal
	

38,42,45,156-160
Hobbies file 	 46-53,75-79
House, drawing a

Acorn, Commodore 64
	

107-109

PLAY, Dragon, Tandy 	 234-235
PLOT 	 88-89
PMODE, Dragon, Tandy 	 90
POKE 	 101, 108-109, 240-247
Positioning text 	 117-123
PRINT 	 26-32,117-123
Printer, choosing a 	 225-229
PROCedures, Acorn 	 64
PSET, Dragon, Tandy 	 13,90-91
Punctuation, in PRINT statements 119-123

R
RAM
	

25,44,46,208-215
Random numbers
	

2-7
Random mazes 	 193-200
READ
	

40-44,104-109
Registers 	 236-239
Relational operators 	 284-285
REPEAT ...UNTIL, Acorn

	
36

Resolution, high and low
	

84
RESTORE
	

106-107
RIGHTS
	

202-207
RND function 	 2-7
ROM
	

208-215
ROM graphics 	26-32,107-109
Running man, building a, Acorn 	28-29

S
Satellite, building a

Dragon, Tandy 	 26-27
SAVE 	 22-25
Scoring 	 97,100-101
SCREEN, Dragon, Tandy 	40,90
Screen drawing program 	132-133
Screen formatting 	 117-123
Scrolling backwards 	 282-283
Ship, drawing a, Dragon, Tandy 	191
SID chip, Commodore 64 	 231
Simons' BASIC, Commodore 64 	87-88
SIN 	 250-256,302-308
Snow scene, Commodore 64 	186-188
Sound effects 	 230-235
Sprite, Commodore 64 	14,15,168-172
Stack 	 237-239
STEP 	 17,21
String functions 	 201-207
String variables 	 4-5,95-96
STRINGS 	 98,205
Structured programming

173-178,216-219
Subroutines 	 62-63

TAB
	

117-122
Teletext graphics, BBC
	

28
Terminating numbers
	

34
Timing
	

97,101-103
Two dimensional arrays
	

269-275
Twos complement
	

179-183
Typing tutor program
	

289-295

U
UDG

colour UDGs, Dragon, Tandy
	

248-249
definition of
	

8-15,40-44
grids for
	

8-11
creating your own
	

38-45

V
VAL, Commodore 64 	 101
Variables 	 3-5,92-96,104-108
VDU command, Acorn 	28-29,70,99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172

IF...THEN
	

3,33-37
Indirection operators
	

247
INKEY, Acorn
	

28-29,103,134-135
INKEYS
	

54-55,132-135
INPUT
	

3-5,117-122,129-135
INSTR
	

206

J

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

LI If you keep getting frustrating error
reports, clean up your programs with
our guide to GETTING RID OF BUGS

Continue the development of your
adventure by learning how to MOVE
AROUND AN ADVENTURE WORLD

Increase your TYPING power by
learning the rest of the letter keys

Practise your HAND ASSEMBLY on
some useful assembly language routines
to manipulate the screen display

:_./Find out HOW TO MERGE programs
and get the best of both worlds

il Plus—for Dragon or Tandy users—a
guide to ANIMATED GRAPHICS
techniques

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

